FUSION1200 Scalable x86 SMP System

Introduction

Life Sciences Departmental System

Manufacturing (CAE) Departmental System

Competitive Analysis: IBM x3950

- FUSION-1200 is a new x86 SMP system
 - Shared memory
 - 8-48 Intel® Xeon® (Core® microarchitecture) processors:
 - Dual-Core or Quad-Core

- Target end-user challenges:
 - Applications can <u>benefit from SMP</u> and currently run on x86
 - Customer needing x86 and large <u>shared memory</u>
 - x86 cluster customers <u>tired of clustering</u> complexities

MODEL	FUSION1200		
Processors	8-12 x Dual/Quad-Core Intel® Xeon® 5x00 (Woodcrest/Clovertown) processors		
Memory	48-192 GB FBDIMM DDR2 (48 DIMMs) at 667 MHz		
Architecture	ScaleMP® Versatile SMP (vSMP)		
Network	Gigabit Ethernet: 7 ports		
Storage	Up to 4.5 TB internal storage (6 x 750GB SATA drives)		
I/O Expansion	- eSATA: 2 ports - One PCI expansion per Chassis		
Operating System	- Red Hat: RHEL 4, Fedora Core 4 - SUSE: SLES 10, open SUSE 10		
Form-Factor	- Desk-side - Rack-mount: 6U standard-depth		
Expansion	Up to 4 chassis, max. configuration: - 48 x Dual/Quad-Core Intel® Xeon® 5x00 (Woodcrest/Clovertown) processors - 768GB FBDIMM DDR2 (192 DIMMs) at 667 MHz		

Designed specifically for <u>compute bound</u> applications, requiring <u>large memory footprint</u> and <u>high memory bandwidth</u>

- The **BEST** x86-based mid-range (8-48 sockets) shared-memory system:
 - Faster and more affordable than SUN and IBM
 - No equivalent offerings from HP and Dell
- The ONLY x86-based SMP system designed from the ground-up for HPC:
 - Highest socket count 12-socket (48 w/extension)
 - · Competitive systems are limited to 8 sockets on AMD and 2 sockets for Intel Core® architecture
 - Largest memory footprint 192GB RAM (768GB w/extension)
 - · Competitive systems are limited to 128GB RAM on AMD and 64GB RAM on Intel Core® architecture
 - Highest measured memory bandwidth in the world 3GB/sec per socket
 - SUN x4600 and IBM x460/x3950 (both 8 sockets system) provide less than half
 - Only system (>2 sockets) that supports quad-core processors
 - Not available on SUN x4600 systems or IBM x460/x3950
 - The only mid-range SMP system based on Intel's new Core® microarchitecture
 - · Intel® Core processors (Woodcrest, Clovertown) rated 'best processors' by the industry

Use Case	Numerical intensive calculation apps (either MPI or OpenMP codes)	Applications that require large memory footprint	Mix of serial jobs and parallel jobs on the same system	Running multiple instances of same application (i.e. throughput mode)	Memory - bandwidth intensive apps
High Socket Count	X		X	X	X
Large memory footprint		X	X		
High memory bandwidth			X		X
Quad-core processors	X			X	
Intel Core® architecture	X	X	X	X	X
Typical Applications	Most of the codes in Life Science segment are of this nature	FEA / CSM codes require large memory to store the model Reservoir simulation applications EDA (single-thread) applications	CSM and CFD codes running in mixed workloads Multi-physics simulations	Applications that benefit from reduction in TCO via server consolidation	Many CFD and Crash Analysis workloads dependant on system bandwidth Schlumberger ECLIPSE

Manufacturing

Computational Structural Mechanics (CSM)

- ANSYS Mechanical
- ABAQUS/Explicit
- ABAQUS/Standard
- LSTC LS-DYNA

Computational Fluid Dynamics (CFD)

- FLUENT
- ANSYS CFX
- CD-adapco STAR-CD
- AVL FIRE

Others

inTrace OpenRT

Energy

- Schlumberger ECLIPSE
- Paradigm Geophysical GeoDepth
- 3DGEO 3DPSDM

Life Sciences

- Schrödinger Jaguar
- Schrödinger Glide
- NAMD
- DOCK
- GAMESS
- GOLD
- mpiBLAST
- GROMACS
- MOLPRO
- OpenEye FRED
- OpenEye OMEGA
- SCM ADF
- HMMER

Horizontal & Benchmarks

- The MathWorks MATLAB
- SPEC CPU2000
- STREAM (OMP)

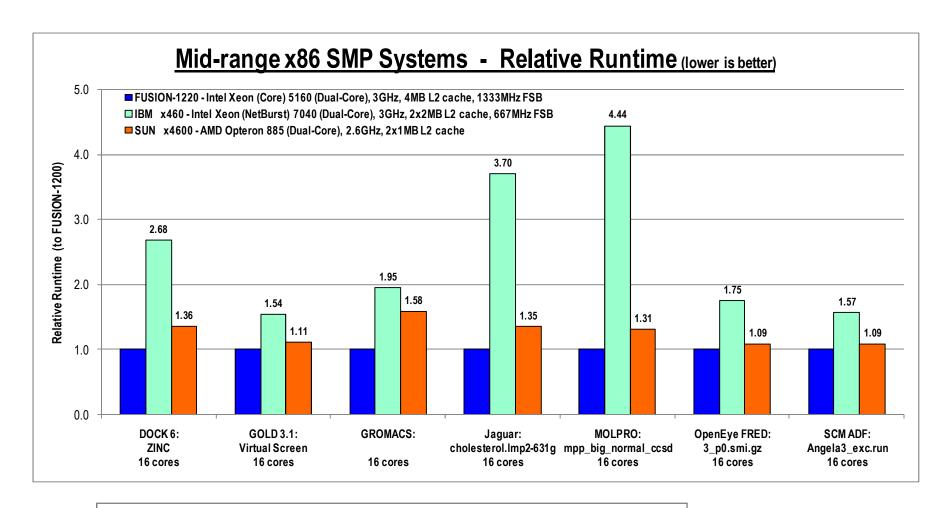
VXTECH	IBM	SUN	SUN	White-Box
FUSION1200	x460 / x3950	x4600	x4600 M2	
Intel	Intel	AMD	AMD	AMD
Xeon 5x00	Xeon 71xx	Opteron 8xx	Opteron 8xxx	Opteron 8xxx
Intel Core	Intel NetBurst	AMD K8	AMD K8	AMD K8
Yes	Yes	Yes	Yes	Yes
Yes	No	No	No	No
12	4	8	8	8
192	64	64	128	128
12	6	4	4	8
7	2	4	4	3
4	8	Not-Expandable	Not-Expandable	Not-Expandable
48	32	8	8	8
768	512	64	128	128
48	48	4	4	8
28	16	4	4	3
SATA	SAS	SAS	SAS	SATA / SAS
Yes (eSATA)	No	No	No	No
1	6	8	8	5
Multiple Power	No	Vas	Vac	Yes
	Intel Xeon 5x00 Intel Core Yes Yes 12 192 12 7 4 48 768 48 28 SATA Yes (eSATA) 1	FUSION1200 x460 / x3950 Intel Intel Xeon 5x00 Xeon 71xx Intel Core Intel NetBurst Yes Yes Yes No 12 4 192 64 12 6 7 2 4 8 48 32 768 512 48 48 28 16 SATA SAS Yes (eSATA) No 1 6 Multiple Power Multiple Power	FUSION1200 x460 / x3950 x4600 Intel Intel AMD Xeon 5x00 Xeon 71xx Opteron 8xx Intel Core Intel NetBurst AMD K8 Yes Yes Yes Yes No No 12 4 8 192 64 64 12 6 4 7 2 4 4 8 Not-Expandable 48 32 8 768 512 64 48 48 4 28 16 4 SATA SAS SAS Yes (eSATA) No No Multiple Power 8 Multiple Power	FUSION1200 x460 / x3950 x4600 x4600 M2 Intel Intel AMD AMD Xeon 5x00 Xeon 71xx Opteron 8xx Opteron 8xxx Intel Core Intel NetBurst AMD K8 AMD K8 Yes Yes Yes Yes Yes Yes Yes Yes Yes No No No 12 4 8 8 192 64 64 128 12 6 4 4 7 2 4 4 4 8 Not-Expandable Not-Expandable 48 32 8 8 768 512 64 128 48 48 4 4 28 16 4 4 SATA SAS SAS SAS Yes (eSATA) No No No Multiple Power No No No No <

- Scales up to 192 cores and 768GB RAM in one rack
- Suitable for desk-side deployment utilizing only common wall power
 - The only system of its class that can be operated in an office environment
 - Office compatible configurations (power considerations):
 - Dual-Core processors:
 - Xeon 5148 up to 12-processors
 - Xeon 5160 up to 8-processors
 - Quad-Core processors:
 - Xeon 5345 up to 8-processors
- Supports eSATA storage expansion
- Supports one FC HBA through one PCI/E slot per Chassis

Life Science Departmental System

Introduction

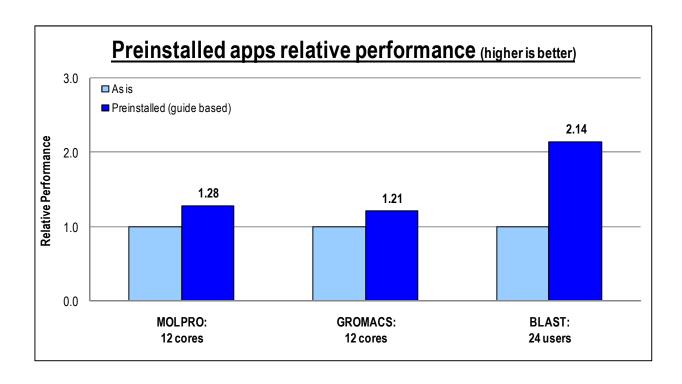
Life Sciences Departmental System


Manufacturing (CAE) Departmental System

Competitive Analysis: IBM x3950

- Requirements:
 - Support a team of Life Sciences developers and scientists
 - Run mix of applications simultaneously
 - Simple and easy to manage compute platform
 - No performance compromise
 - Run large simulations in memory
 - Develop new applications faster. No cluster parallelization needed
 - Rapid deployment
- Introducing....

FUSION1200-Life Sciences Departmental System


Use Case	Numerical intensive calculation apps (either MPI or OpenMP codes)	Applications that require large memory footprint	Mix of serial jobs and parallel jobs on the same system	Running multiple instances of same application (i.e. throughput mode)	Memory - bandwidth intensive apps
High Socket Count	X		X	X	X
Large memory footprint		X	X		
High memory bandwidth			X		X
Quad-core processors	X			X	
Intel Core® architecture	X	X	X	X	X
Typical Applications	Schrödinger Jaguar NAMD DOCK GAMESS GOLD mpiBLAST GROMACS MOLPRO OpenEye FRED OpenEye OMEGA SCM ADF HMMER			BLAST Schrödinger Glide	

Notes: - All results are for 16 cores run, on FUSION-1220 (Dual-Core system)

- FUSION1240 (Quad-Core system) results may vary
- FUSION1240 is the only system with more than 2 Quad-Core processors

- FUSION1200 is preinstalled with leading Life Sciences applications
- 'Top Performance for x86 Multi-core Systems' guide included
- Preinstalled applications and OS according to the guide for top performance
- Package details:
 - Operation System:
 - Red Hat RHEL 4
 - Applications:
 - NAMD
 - DOCK
 - GAMESS
 - mpiBLAST
 - GROMACS

Manufacturing

Computational Structural Mechanics (CSM)

- ANSYS Mechanical
- ABAQUS/Explicit
- ABAQUS/Standard
- LSTC LS-DYNA

Computational Fluid Dynamics (CFD)

- FLUENT
- ANSYS CFX
- CD-adapco STAR-CD
- AVL FIRE

Others

inTrace OpenRT

Energy

- Schlumberger ECLIPSE
- Paradigm Geophysical GeoDepth
- 3DGEO 3DPSDM

Life Sciences

- Schrödinger Jaguar
- Schrödinger Glide
- NAMD
- DOCK
- GAMESS
- GOLD
- mpiBLAST
- GROMACS
- MOLPRO
- OpenEye FRED
- OpenEye OMEGA
- SCM ADF
- HMMER

Horizontal & Benchmarks

- The MathWorks MATLAB
- SPEC CPU2000
- STREAM (OMP)

Manufacturing (CAE) Departmental System

Introduction

Life Sciences Departmental System

Manufacturing (CAE) Departmental System

Competitive Analysis: IBM x3950

- Requirements:
 - Support a team of engineers
 - Run both CSM and CFD simultaneously (FSI)
 - Perform high fidelity simulations
 - Simple and easy to manage compute platform
 - Run very large simulations in memory
 - Shorter design cycles
 - Rapid deployment
- Introducing....

FUSION1200 - Manufacturing (CAE) Departmental System

Use Case	Numerical intensive calculation apps (either MPI or OpenMP codes)	Applications that require large memory footprint	Mix of serial jobs and parallel jobs on the same system	Running multiple instances of same application (i.e. throughput mode)	Memory - bandwidth intensive apps
High Socket Count	X		X	X	X
Large memory footprint		Х	Х		
High memory bandwidth			Х		X
Quad-core processors	X			X	
Intel Core® architecture	X	Х	Х	X	X
Typical Applications					

		Today's	Compute power increase options			
		compute platform	Option I	Option II		
		High-performance workstation	Cluster (data-center)	FUSION1200 – Departmental SMP System		
Har	Deployment method		Cluster Nodes Head Node InfiniBand Switch	CHERTY.		
Hardware	System specification	4-Socket, Dual-Core	1. 5 x 2-Socket, Dual/Quad-Core 2. 1 x 2-Socket, Dual/Quad-Core (large-mem.) 3. InfiniBand Switch	12-Socket, Dual/Quad-Core		
	Max Cores / Simulation	8 (Dual-Core)	24 (Dual-Core) - 48 (Quad-Core)	24 (Dual-Core) - 48 (Quad-Core)		
	Max Memory / Simulation	32GB (using 2GB DIMMS)	16GB (using 2GB DIMMS)	96GB (using 2GB DIMMS)		
C	Large-memory Simulations	Yes	No	Yes		
Capabilities	Large Multi-processes Simulations	No	Yes	Yes		
es	# of Multi-user Simulations	1-2	1-4 (Job Scheduler Required)	1-6		
Others	Administration costs	\$	\$\$\$\$\$	\$		
SJ	Job Scheduler	Not Required	Required	Not Required		

Manufacturing

Computational Structural Mechanics (CSM)

- ANSYS Mechanical
- ABAQUS/Explicit
- ABAQUS/Standard
- LSTC LS-DYNA

Computational Fluid Dynamics (CFD)

- FLUENT
- ANSYS CFX
- CD-adapco STAR-CD
- AVL FIRE

Others

inTrace OpenRT

Energy

- Schlumberger ECLIPSE
- Paradigm Geophysical GeoDepth
- 3DGEO 3DPSDM

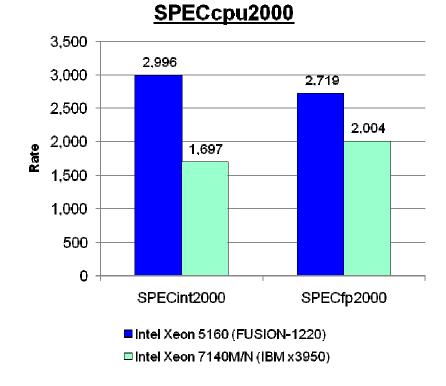
Life Sciences

- Schrödinger Jaguar
- Schrödinger Glide
- NAMD
- DOCK
- GAMESS
- GOLD
- mpiBLAST
- GROMACS
- MOLPRO
- OpenEye FRED
- OpenEye OMEGA
- SCM ADF
- HMMER

Horizontal & Benchmarks

- The MathWorks MATLAB
- SPEC CPU2000
- STREAM (OMP)

Competitive Analysis: IBM x3950

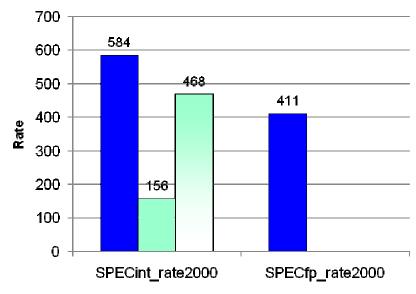

Introduction

Life Sciences Departmental System

Manufacturing (CAE) Departmental System

Competitive Analysis: IBM x3950

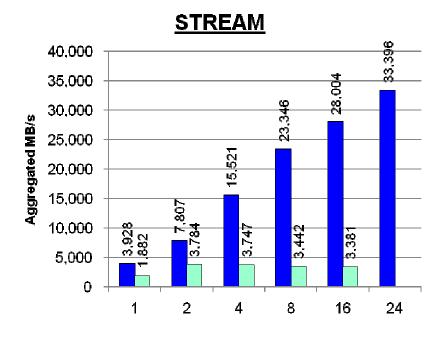
- IBM x3950 is using Xeon processors based on NetBurst micro-architecture
- FUSION1200 is using Xeon processors based on Core microarchitecture, Intel's most advanced micro-architecture
- The IBM x3950 processors provides only 60%-75% of the FUSION1220 SPECcpu2000 performance



Notes:

- 1. IBM x3950 has 667Mhz FSB speed and can only use Intel Xeon 71xxN processors
- 2. There are no published SPECfp2000 results for 71xxN processors 71xxM used instead
- 3. 71xxM have same clock rate but higher FSB speed (800MHz)

- IBM x3950 has no published SPECcpu_rate2000 for 8 processors
 - No published SPECfp_rate2000
- The SPECint_rate2000 performance of the IBM x3950 is only 80% of the FUSION1220
 - Results linearly normalized to 24-core

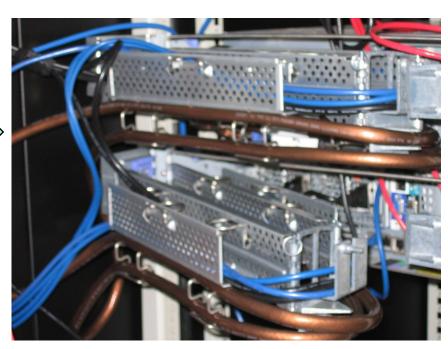

SPECcpu_rate2000

- FUSION-1220 (24 cores x Intel Xeon 5160)
- ■IBM x3950 (8 cores x Intel Xeon 7140N)

□NORMALIZED IBM x3950 (24 cores x Intel Xeon 7140N)

- IBM x3950 max memory bandwidth (measured by STREAM benchmark) is 3.8GB/s
- FUSION1220 max memory bandwidth is 33.4GB/s
- The IBM x3950 memory bandwidth is only 15% of the FUSION1220 memory bandwidth on 16-cores

■ FUSION-1220 (Intel Xeon 5160) ■ IBM x3950 (Intel Xeon 7040)


Notes:

- 1. Results by ScaleMP
- 2. x3950 results based on Intel Xeon 7040 processors
- 3. Intel Xeon 7040 and 71xxN processors has same FSB speed (667MHz)

- IBM x3950 has 4 processors in a chassis and requires complex cabling for 8 processor configurations (total: 6U)
- FUSION-1200 has 12 processors in a 7U chassis, also available in desk-side

FUSION-1200 - 12 processor configuration
Picture shows desk-side, system available in rack-mount as well

IBM x460 / x3950 back view - 8 processor configuration - 2 chassis
Picture taken at ScaleMP lab

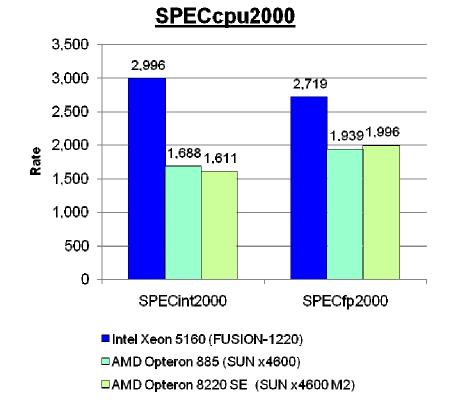
System Vendor	VXTECH	IBM	
System Model	FUSION1200	x460 / x3950	
Processor			
Vendor	Intel	Intel	
Model	Xeon 51xx / 53xx	Xeon 71xx	
Micro-Architecture	Intel Core	Intel NetBurst	
Dual-Core availability	Yes	Yes	
Quad-Core availability	Yes	No	
Chassis			
Max. Processors (sockets) / Chassis	12	4	
Max. Memory / Chassis (GB)	192	64	
Max. Internal Drives / Chassis	12	6	
Integral GigE Ports / Chassis	7	2	
System			
Max. Chassis	4	8	
Max. Processors (sockets) / System	48	32	
Max. Memory (GB) / System	768	512	
Max. Internal Drives / System	48	48	
Integral GigE Ports / System	28	16	
Others			
Internal Drives Type	SATA	SAS	
Integral IO Expansion / Chassis	Yes (eSATA)	No	
Available PCIx/e Slots / Chassis	1	6	
Redundant Power Supply	Multiple Power Supply	No	

Competitive Analysis: SUN x4600/4600M2

Introduction

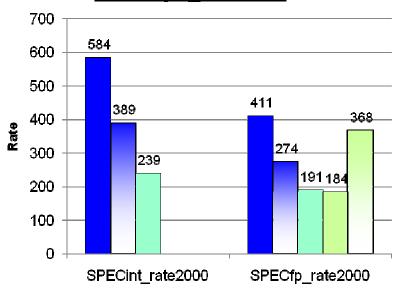
Life Sciences Departmental System

Manufacturing (CAE) Departmental System

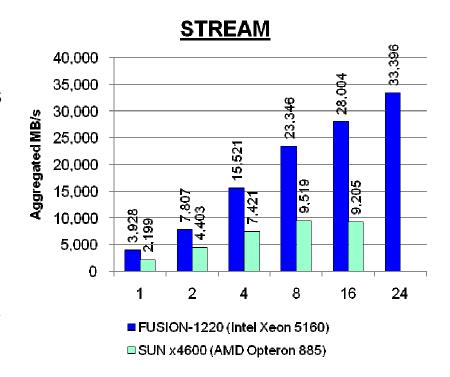

Competitive Analysis: IBM x3950

- FUSION1200 is a 12-socket Intel Xeon system
- FUSION1200 supports two types of Intel Xeon (Core microarchitecture) processors:
 - FUSION1220 support Dual-Core processors: up to 3.0GHz with Intel Xeon 5160 and 1333MHz FSB
 - FUSION1240 support Quad-Core processors: up to 2.33GHz with Intel Xeon 5145 and 1333MHz FSB
- Core is Intel's newest and most advanced micro-architecture

SUN x4600 / x4600 M2


- SUN x4600 is SUN's first 8-socket AMD Opteron server
- SUN x4600 is supports two types of AMD Opteron Dual-Core processors:
 - x4600 Socket E processors: up to 2.6GHz with AMD Opteron 885 and DDR1 memory
 - X4600 M2 Socket F processors: up to 2.8GHz with AMD Opteron 8280 and DDR2 memory
- No Quad-Core support!

- No significant performance difference between the processors of SUN x4600 and SUN x4600 M2
- The SUN x4600 / x4600 M2
 processors provides only 55%-75% of
 the FUSION1220 SPECcpu2000
 performance


- SUN x4600 M2 has no published SPECcpu_rate2000 for 8 processors
 - No published SPECint_rate2000 at all!
- The SPECcpu_rate2000 performance of the SUN x4600 is only 60%-70% of the FUSION1220
 - Results linearly normalized to 16-core
- The SPECfp_rate2000 performance of the SUN x4600 M2 is 135% of the FUSION-1220
 - Results linearly normalized to 16-core

SPECcpu rate2000

- FUSION-1220 (24 cores x Intel Xeon 5160)
- ■NORMALIZED FUSION-1220 (16 cores x Intel Xeon 5160)
- SUN x4600 (16 cores x AMD Opteron 885)
- ■SUN x4600 M2 (8 cores x AMD Opteron 8220 SE)
- □NORMALIZED SUN x4600 M2 (16 cores x AMD Opteron 8220 SE)

- SUN x4600 max memory bandwidth (measured by STREAM benchmark) is 9.5GB/s
- FUSION1220 max memory bandwidth is 33.4GB/s
- The SUN x4600 memory bandwidth is only 35% of the FUSION1220 memory bandwidth on 16-cores

Notes:

1. Results by ScaleMP

- SUN x4600 / SUN x4600 M2 has 8 processors in a rack-mounted only chassis and does not support chassis expansion
- FUSION1200 has 12 processors in a chassis, also available in deskside configuration. FUSION1200 support up to 4 chassis in one system.

FUSION-1200 - 12 processors configuration Picture shows desk-side, system available in rack-mount as well

System Vendor	VXTECH	SUN	SUN
System Model	FUSION1200	x4600	x4600 M2
Processor			
Vendor	Intel	AMD	AMD
Model	Xeon 51xx / 53xx	Opteron 8xx	Opteron 8xxx
Micro-Architecture	Intel Core	AMD K8	AMD K8
Dual-Core availability	Yes	Yes	Yes
Quad-Core availability	Yes	No	No
Chassis			
Max. Processors (sockets) / Chassis	12	8	8
Max. Memory / Chassis (GB)	192	64	128
Max. Internal Drives / Chassis	12	4	4
Integral GigE Ports / Chassis	7	4	4
System			
Max. Chassis	4	Not-Expandable	Not-Expandable
Max. Processors (sockets) / System	48	8	8
Max. Memory (GB) / System	768	64	128
Max. Internal Drives / System	48	4	4
Integral GigE Ports / System	28	4	4
Others			
Internal Drives Type	SATA	SAS	SAS
Integral IO Expansion / Chassis	Yes (eSATA)	No	No
Available PCIx/e Slots / Chassis	1	8	8
Redundant Power Supply	Multiple Power Supplies	Yes	Yes

Contacts: David Giorgi, +1 (514) 885-9464

Shai Fultheim, +1 (408) 480-1612