
Parallel I/O in Practice

Rob Latham

 Rob Ross

Math and Computer Science
Division

Argonne National Laboratory

robl@mcs.anl.gov,
rross@mcs.anl.gov

Brent Welch

Panasas, Inc.

welch@panasas.com

Katie Antypas

NERSC

kantypas@lbl.gov

1

“There is no physics without I/O.”
– Anonymous Physicist

SciDAC Conference
June 17, 2009

(I think he might have been kidding.)

“Very few large scale applications of
practical importance are NOT data

intensive.”

 – Alok Choudhary, IESP, Kobe Japan, April 2012

(I know for sure he was not kidding.)

2

About Us

 Rob Latham (robl@mcs.anl.gov)
– Senior Software Developer, MCS Division, Argonne National Laboratory

– ROMIO MPI-IO implementation

– Parallel netCDF high-level I/O library

– Application outreach

 Rob Ross (rross@mcs.anl.gov)
– Computer Scientist, MCS Division, Argonne National Laboratory

– Parallel Virtual File System

– High End Computing Interagency Working Group (HECIWG) for File Systems and I/O

 Brent Welch (welch@panasas.com)
– Chief Technology Officer, Panasas

– Berkeley Sprite OS Distributed Filesystem

– Panasas ActiveScale Filesystem

– IETF pNFS

 Katie Antypas (kantypas@lbl.gov)
– Group Lead for User Services, NERSC

– Guides application groups towards efficient use of NERSC's Lustre and GPFS file
systems.

– Collaborates with HDF5 Group and Cray's MPI-IO developers to improve application
I/O performance.

3

Outline

Introduction

Storage hardware

Flash and future
technology

RAID’s role in storage

File system overview

Parallel file system
technology

Lunch discussion

Workloads

Benchmarking

POSIX

MPI-IO

IO Forwarding

Parallel-NetCDF

HDF5

Characterizing I/O with
Darshan

Wrapping up

4

Computational Science

 Use of computer simulation as a tool for
greater understanding of the real world

– Complements experimentation and theory

 Problems are increasingly computationally
expensive

– Large parallel machines needed to
perform calculations

– Critical to leverage parallelism in all
phases

 Data access is a huge challenge

– Using parallelism to obtain performance

– Finding usable, efficient, and portable
interfaces

– Understanding and tuning I/O

5

Visualization of entropy in Terascale

Supernova Initiative application. Image from

Kwan-Liu Ma’s visualization team at UC Davis.

IBM Blue Gene/P system at Argonne

National Laboratory.

Data Volumes in Computational Science

PI Project

On-line
Data
(TBytes)

Off-line
Data
(TBytes)

Lamb Supernovae Astrophysics 100 400

Khokhlov Combustion in Reactive
Gases

1 17

Lester CO2 Absorption 5 15

Jordan Seismic Hazard Analysis 600 100

Washington Climate Science 200 750

Voth Energy Storage Materials 10 10

Vashista Stress Corrosion Cracking 12 72

Vary Nuclear Structure and
Reactions

6 30

Fischer Reactor Thermal Hydraulic
Modeling

100 100

Hinkel Laser-Plasma Interactions 60 60

Elghobashi Vaporizing Droplets in a
Turbulent Flow

2 4

Data requirements for select 2012 INCITE
applications at ALCF (BG/P)

Top 10 data producer/consumers

instrumented with Darshan over the

month of July, 2011. Surprisingly,

three of the top producer/consumers

almost exclusively read existing data.

6

Application Dataset
Complexity vs I/O

Aneurysm

Right Interior

Carotid Artery

Platelet

Aggregation

Model complexity:

Spectral element mesh (top)

for thermal hydraulics

computation coupled with

finite element mesh (bottom)

for neutronics calculation.

Scale complexity:

Spatial range from

the reactor core in

meters to fuel pellets

in millimeters.

7

Images from T. Tautges (ANL) (upper left), M. Smith

(ANL) (lower left), and K. Smith (MIT) (right).

 I/O systems have very simple
data models

– Tree-based hierarchy of containers

– Some containers have streams of bytes
(files)

– Others hold collections of other containers
(directories or folders)

 Applications have data models
appropriate to domain

– Multidimensional typed arrays, images
composed of scan lines, variable length
records

– Headers, attributes on data

 Someone has to map from one
to the other!

Challenges in Application I/O

 Leveraging aggregate communication and I/O
bandwidth of clients
– …but not overwhelming a resource limited I/O system with

uncoordinated accesses!

 Limiting number of files that must be managed
– Also a performance issue

Avoiding unnecessary post-processing

Often application teams spend so much time on this that
they never get any further:
– Interacting with storage through convenient abstractions

– Storing in portable formats

Parallel I/O software is available that can address all
of these problems, when used appropriately.

8

I/O for Computational Science

Additional I/O software provides improved performance and
usability over directly accessing the parallel file system. Reduces
or (ideally) eliminates need for optimization in application codes.

9

Parallel File System

 Manage storage hardware

– Present single view

– Stripe files for performance

 In the I/O software stack

– Focus on concurrent, independent access

– Publish an interface that middleware can use effectively

• Rich I/O language

• Relaxed but sufficient semantics

10

11

I/O Forwarding

Present in some of the largest systems
– Provides bridge between system and

storage in machines such as the
Blue Gene/P

Allows for a point of aggregation, hiding
true number of clients from underlying
file system

Poor implementations can lead to
unnecessary serialization, hindering
performance

I/O Middleware

 Match the programming model

(e.g. MPI)

 Facilitate concurrent access by
groups of processes
– Collective I/O

– Atomicity rules

 Expose a generic interface
– Good building block for high-level libraries

 Efficiently map middleware operations into PFS ones
– Leverage any rich PFS access constructs, such as:

• Scalable file name resolution

• Rich I/O descriptions

12

High Level Libraries

 Match storage abstraction

to domain

– Multidimensional datasets

– Typed variables

– Attributes

 Provide self-describing, structured files

 Map to middleware interface

– Encourage collective I/O

 Implement optimizations that middleware cannot, such as

– Caching attributes of variables

– Chunking of datasets

13

What we’ve said so far…

Application scientists have basic goals for interacting with

storage

– Keep productivity high (meaningful interfaces)

– Keep efficiency high (extracting high performance from hardware)

Many solutions have been pursued by application teams,

with limited success

– This is largely due to reliance on file system APIs, which are poorly

designed for computational science

Parallel I/O teams have developed software to address

these goals

– Provide meaningful interfaces with common abstractions

– Interact with the file system in the most efficient way possible

14

Storage Hardware

15

Storage Hardware

Bits: painted on metal oxide, or semi-conductor

Speed hierarchy (CPU, DRAM, Networking, SSD, Disk)

Storage devices: mechanical (disk, tape) and electronic (SSD)

For performance, many devices in parallel

Failures: bit rot, device failure.

More devices, more failures

For reliability, add hardware redundancy and lots of software

Software has bugs, so recovery techniques are necessary

16

Storage Bits

Magnetic bits on disk and tape

– Stable w/out power

– Encoding techniques use N+M bits to store N user bits

– Relatively cheap to manufacture

– Small amounts of electronics for large numbers of bits

Semi-conductor bits

– DRAM, constant power draw

– FLASH, stable w/out power – with caveats

• Write/Erase cycles wear down the device

• 10 year storage when new

• 1 year storage when old

– At least 10x the cost to manufacture electronic bits compared to

magnetic bits

17

Why can’t we junk all the disks

Storage Hierarchy is DRAM, FLASH, Disk, Tape

Cannot manufacture enough bits via Wafers vs. Disks

– SSD 10x per-bit cost, and the gap isn’t closing

– Cost of semiconductor FAB is >> cost of disk manufacturing facility

– World-wide manufacturing capacity of semi-conductor bits is perhaps

1% the capacity of making magnetic bits

• 500 Million disks/year (2012 est) avg 1TB => 500 Exabytes (all manufacturers)

• 30,000 wafers/month (micron), 4TB/wafer (TLC) => 1.4 Exabytes (micron)

And Tape doesn’t go away, either

– Still half the per-bit cost, and much less lifetime cost

– Tape is just different

 no power at rest

 physical mobility

 higher per-device bandwidth (1.5x to 2x)

18

Bandwidth Hierarchy

19

CPU CPU
Memory

8 GT/s => 64 GB/sec

8 Bytes every two cycles in both directions

2 chan, 866Mhz

 => 12 GB/sec

3 chan, 1.3 Ghz

=> 30 GB/sec

QPI QPI

PCIe

24 lanes

8 Gb/lane

=> 24 GB/s

NIC SAS
HBA

HDD

FDR IB

56 Gb/s

SAS

6 Gb/s

8x 8x

8x

PCIe

150 MB/s SAS
Switch

28x

SSD
450 MB/s

nanoseconds

microseconds

milliseconds

B Bytes

b Bits

Networking Speeds and Feeds

Network Encoding Physical Raw Effective

FDR IB 66/64 4x 14 Gb/s 56 Gb/s 6+ GB/s

QDR IB 8/10 4x 10 Gb/s 40 Gb/s 4 GB/s

40 GE 10/12.5 4x 10 Gb/s 40 Gb/s 5 GB/s

10 GE 10/12.5 1x 10 Gb/s 10 Gb/s 1.25 GB/s

20

100 Gb/s (4x 25 Gb/s) projected for 2015

Network adaptor cards and their PCIe interface also limits throughput and

affects latency for small packets

PCIe3, 8 Gb/s per channel and 66/64 encoding

PCIe2, 5 Gb/s per channel and 8/10 encoding

8x PCIe2 is ample for dual 10GE

16x PCIe3 is a match for dual FDR IB

Bandwidth

CPU sockets have lots of it

– To memory

– To PCIe lanes

High speed networks have a decent amount

– Affected by protocol (CPU) overhead

Storage devices are lagging behind

– Especially hard drives

– SSD write performance isn’t super great, either

21

Storage Devices

Magnetic Hard Disk

Drives

Solid State Storage Devices (flash)

Magnetic Tape

22

Platter

Spindle

Head

Actuator

LTO 6

2.5 TB, 160 MB/sec

Drive Characteristics

Capacity (in MB, GB, TB)

– Function of areal density

– Areal density = track density * linear density

– Sector is 512 bytes, moving to 4K

Transfer Rate (bandwidth) – MB/sec

– Rate at which a device reads or writes data

– 1-250 MB/sec depending on seeks

Access Time (milli-seconds)

– Delay before the first byte is read

– Seek time plus (avg) rotational delay

– 8.33 msec for full rotation at 7200 RPM

– 1 msec track-to-track seek (or less)

– 20-30 msec “full stroke” seek (or more)

More sectors per track

on outer cylinders

Only one head active

at a time, either

reading or writing

23

Base-2 vs Base-10 measurements

24

Unit Base-10 Base-2 % diff

KB / KiB 10^3 2^10 = 1,024 2.5%

MB / MiB 10^6 2^20 = 1,048,576 5.0%

GB / GiB 10^9 2^30 = 1,073,741,824 7.5%

TB / TiB 10^12 2^40 = 1,099,511,627,776 10%

PB / PiB 10^15 2^50 = 1,125,899,906,842,624 12.5%

EB / EiB 10^18 2^60 = 1,152,921,504,606,846,976 15%

Storage vendors sell in base-10 units (Megabyte)

 Even though a disk sector is an even power of 2

 512 bytes or 4096 bytes

Computer scientists often think in base-2 units (Mebibyte)

 Even though they use base-10 unit terms

GB - Bytes

Gb - Bits

Capacity vs Bandwidth

Areal density increases by 40% per year

– Per drive capacity increases by 50% to 100% per year

– 2008: 500 GB

– 2009: 1 TB

– 2010: 2 TB

– 2011: 3 TB

– 2012: 4 TB

Drive interface speed increases by 15-20% per year

– 2008: 500 GB disk (WD RE2): 98 MB/sec

– 2009: 1 TB disk (WD RE3): 113 MB/sec (+15%)

– 2010: 2 TB disk (WD RE4): 138 MB/sec (+22%)

Takes longer and longer to completely read each new

generation of drive

25

Disk Transfer Rates over Time

Thanks to R. Freitas of IBM Almaden Research Center for providing much of the data for this graph.

26

5 minutes to read 315 MB disk

At 1 MB/sec (IBM 3350)

25 minutes to read 440 GB disk

At 280 MB/sec (Cheetah 15K.6)

11 hours to read 4 TB SATA

At 50 MB/sec

FLASH and SSD

27

SSD

 Interface

– SATA, SAS, PCIe, NVMexpress

– Non-disk, PCIe interfaces for low overhead

Controller

– Wear leveling, garbage collection, data integrity

DRAM

– Fast copy of Flash Translation Layer

– Write buffer (optional)

FLASH

– Many packages to increase concurrency

28

SSD Components

SATA or SAS

Nvm express

mSATA

29

Controller

FLASH

DRAM

FLASH Characteristics

Non-volatile
– Each bit is stored in a “floating gate” that holds value without power

– Electrons can leak, so shelf life and write count is limited

Page-oriented
– Smaller (e.g., 8K) read/write block based on addressing logic

– Larger (e.g., 1MB) erase block to amortize the time it takes to erase

 Flash Translation Layer (FTL)

– allows wear leveling

– requires garbage collection

Performance
– Fast reads (no seeks)

– Slower writes

– Slow erase cycles

– Background tasks cause

interference (1 to 10 msec)

30

http://icrontic.com/articles/how_ssds_work

FLASH Reliability

SLC – Single Level Cell

– One threshold, one bit

– 105 to 106 write cycles per

page

MLC – Multi Level Cell

– Multiple thresholds, multiple

bits (2 bits)

– N bits requires 2N Vt levels

– 104 write cycles per page

– Denser and cheaper, but

slower and less reliable

TLC – Triple Level Cell

– Cheapest, slowest writes

– 500 write cycles per page!

31

http://www.micron.com/nandcom/

FLASH Translation Layer (FTL)
 Level of indirection supports wear leveling

– Page map indirection allows controller to write to any free page

– Page write may trigger background copies and erases

Wear leveling is critical

– Different pages will wear out at different times depending on how

often each page is written

– Pages in an Erase Block have to be garbage collected together

Over provisioning

– 120 GB device is physically 128GB to support wear leveling

32

4K Data

Logical Page Address

ECC and Checksum State

Physical Page
128 Byte Header

Vendors are on 2nd (or 3rd)

generation algorithms

FLASH Trends

Serial interface speed getting faster

Write speeds getting slower

Page size increases from 4K to 8K or 16K

Erase block increases from 256K to 1M

Multiple channels per package allow more concurrent

operations

High speed devices use many packages and stripe data

to get high bandwidth

Power failure protection for volatile DRAM inside the

device

33

Future Technologies

34

35

Figure courtesy Micron

36

Figure courtesy Micron

STT MRAM

Magnetoresistive RAM

– Store bit in magnetic field

– No power to hold value

– Low power read/write

STT

– Spin Torque Transfer

– Low power, fast

Everspin

– Shipping 4Mb parts

– Annouced 16Mb part

– SRAM or Flash interface

 Long term winner

– Same feature size as DRAM?

Courtesy http://en.wikipedia.org/wiki/User:Cyferz

37

Phase Change Memory

 Based on state change instead
of stored electrons

– Crystalline vs. amorphous

– Germanium-Antimony-
Tellurium (GST)
chalcogenide glass

 Change state by heating to
650ºC and then cooling

– Cool quickly ⇒ amorphous

– Cool slowly ⇒ crystalline

 Samsung, Micron shipping
devices now (128Mb)

– 1,000,000 overwrites

 Maybe DRAM replacement in
2015?

– Byte addressible, but limited writes

– Much lower power (no refresh)

38

Courtesy http://en.wikipedia.org/wiki/User:Cyferz

RAID and Erasure Codes

39

The Disk Bandwidth/Reliability Problem

Disks are slow: use lots of them in a parallel file system

However, disks are unreliable, and lot’s of disks are even
more unreliable

• This simple two-disk system is twice as fast, but half as reliable, as a

single-disk system

40

RAID Overview

RAID is a way to aggregate multiple physical devices into a

larger virtual device

– Redundant Array of Inexpensive Disks

– Redundant Array of Independent Devices

 Invented by Patterson, Gibson, Katz, et al

– http://www.cs.cmu.edu/~garth/RAIDpaper/Patterson88.pdf

Redundant data is computed and stored so the system can

recover from disk failures

– RAID was invented for bandwidth

– RAID was successful because of its reliability

41

RAID and Data Protection

RAID equation generates redundant data:
– P = A xor B xor C xor D (encoding)

– B = P xor A xor C xor D (data recovery)

A B D C P
=> ^ ^ ^

 RAID equations are “erasure codes” because you can

erase something (i.e., lose a disk) and get it back using

the erasure code

42

RAID levels

0 – None
Stripe data over disks, no protection against failures

1 – Mirroring

2- Hamming codes, bit-level parity

3- XOR ECC, arm-locked, byte-level parity

4- XOR ECC, parity stripe unit

5- XOR ECC, rotated parity stripe unit

6- Multiple failure protection
Reed-Solomon very popular

Other erasure codes exist

10 (really 1+0)- both striped and mirrored

43

Rotating parity

RAID-4

 D D D D P

 D D D D P

 D D D D P

RAID-5

 D D D D P

 D D D P D (left-symmetric)

 D D P D D

RAID-6

 D D D P Q

 D P Q D D (left-symmetric dual parity)

 Q D D D P

 Rotating parity

diffuses the load from

parity updates across

all spindles

Spindle

Stripe

44

The Small Write Problem

When you only write part of a stripe, you need to
compute parity across data blocks that aren’t in-hand

Two approaches
– Large write: read the unwritten components

– Small write: read the written components

 4-cycle write to update one disk
– Read old value of C

– XOR with new value of C and save the result in T

– Write new value of C

– Read old value of P

– XOR T and old P, write the result as the new P

45

A B D C P
=> ^ ^ ^

Erasure codes / Reed Solomon

Used to provide additional levels of protection

N is the number of redundancy units

– May tolerate N failures

• N=2: P, Q

– May detect and correct up to N-1 corruptions

First redundancy unit is a simple XOR

– Thus, RAID-5 is equivalent to Reed-Solomon with N=1

– Additional redundancy units require more complex math (Galois Field)

Failures versus corruption

– Tolerate up to N failures

– Detect and repair up to N-1 corruptions

46

The problem with RAID

Traditional block-oriented RAID protects and rebuilds entire

drives

– Drive capacity increases have outpaced drive bandwidth

– It takes longer to rebuild each new generation of drives

– Media defects on surviving drives interfere with rebuilds

We need faster rebuilds, and a way to handle media defects

A

=> ^ ^ ^

B C D P

47

Blade Capacity and Speed History

Compare time to write a blade

(two disks) from end-to-end over

4* generations of Panasas blades
SB-4000 same family as SB-6000

Capacity increased 39x

Bandwidth increased 3.4x

(function of CPU, memory, disk)

Time goes from 44 min to > 8 hrs 0

100

200

300

400

500

600

SB-160 SB-800 SB-2000 SB-4000 SB-6000

Minutes to Erase 2-drive Blade

0

1000

2000

3000

4000

5000

6000

7000

SB-160 SB-800 SB-2000 SB-4000 SB-6000

Capacity in GB of 2-drive Blade

0

50

100

150

200

250

SB-160 SB-800 SB-2000 SB-4000 SB-6000

Local 2-Disk Bandwidth in MB/Sec

48

Improving RAID

 Improving rebuild times

– Declustered parity groups provide more disk bandwidth

– Parallel rebuild algorithms provide more XOR and memory bandwidth

– Declustered rebuilds reduce hot spots

 Improving resilience to media defects

– Vertical parity across sectors to fix more media defects

– Per-file RAID equation creates small fault domain

– “Too many” cause loss of one file, not the whole RAID array

49

Traditional RAID Organization

Multiple RAID Groups

– 2 Groups, each 2 Data + 1 Parity in this simple example

Global spare disk

F1

K1

H1

J2

G1

L1

FP JP

HP J1

G2

L2

F2

K2

H2

KP

GP LP

S3 S1 S2

50

Traditional RAID Rebuild

Group with failed drive is busy with reads

Global spare is busy with writes

Other RAID groups do not participate

Uneven utilization slows down parallel I/O using all groups

F1

K1

H1

J2

G1

L1

FP JP

HP J1

G2

L2

F2

K2

H2

KP

GP LP

S3 S1 S2
Failed drive

Read Write

Controller performs XOR

51

Declustering Step 1

Subdivide devices into multiple partitions

– F1 xor F2 => FP

– H1 xor H2 => HP

– etc

F1

J1

H1

G2

H2

J2

FP S1

S2 HP

G1

K1

F2

K2

L1

GP

LP L2

S3 JP KP

52

Declustering Step 2

Shuffle data and parity blocks

Each device has at most one piece of a group

– Must not lose two pieces with one device failure

F1

K1

H1

J2

G1

L1

FP S1

S2 J1

G2

L2

F2

K2

H2

KP

GP LP

S3 HP JP

53

Declustering Step 3

Spread out Spare space, too

Placement constraints on what spare can be used

– Cannot result in two pieces of a group on one device

F1

K1

H1

J2

G1

L1

FP JP

HP J1

G2

L2

F2

K2

H2

KP

GP LP

S3 S1 S2

54

Declustered RAID Rebuild

Failed drive

Read during rebuild Write during rebuild Unused during rebuild

F1

K1

H1

J2

G1

L1

FP JP

HP J1

G2

L2

F2

K2

H2

KP

GP LP

S3/F1 S1/K1 S2/H1

Every surviving drive contributes bandwidth

Same I/O spread over more spindles

– Reading 2 drives worth of data

– Writing 1 drive worth of data

– 6 spindles active

55

Declustered RAID Rebuild

Failed drive

Read during rebuild Write during rebuild Unused during rebuild

F1

K1

H1

J2

G1

L1

FP JP

HP J1

G2

L2

F2

K2

H2

KP

GP LP

S3/L2 S1/H2 S2/H2

Perfect placement is a hard problem

– Mark Holland dissertation from 90’s

56

Triplication and Google FS (and HDFS)

Consider data nodes plus their disks as a single failure

domain

Triplicate file (chunks) and spread among data nodes

 Just like declustering, the rebuild workload is diffused

among the data nodes

Data nodes can do their work in parallel

57

File (Virtual Object)

Object RAID

Per-file data protection

Small files (<64K) mirrored in two component objects

 Large files use RAID encoding across several component

objects

Parallel file system stores its metadata in object attributes

– All attributes are mirrored on first two component objects that were

created

– Remaining component objects have just a few attributes

– Attributes include map, parent, size, date stamps, owner, ACL

Data

Attrs

Object
Data

Attrs

Object
Data

Attrs

Object
Data

Attrs

Object
Parity

Attrs

Object

58

Object RAID

Object RAID protects and rebuilds files

– Failure domain is a file, which is typically much, much smaller than

the physical storage devices

– File writer can be responsible for generating redundant data, which

avoids central RAID controller bottleneck

– Different files sharing same devices can have different RAID

configurations to vary their level of data protection and performance

F1 F2 F3 FP ^ ^ =>

G1 G2 G3 GP ^ ^ => GQ

H1 HM =>

,

RAID 4

RAID 6

RAID 1

59

pNFS Layouts

Client gets a layout from the NFS Server

The layout maps the file onto storage devices and addresses

– Object-based layouts support per-file RAID

The client uses the layout to perform direct I/O to storage

At any time the server can recall the layout

Client commits changes and returns the layout when it’s done

 pNFS is optional, the client can always use regular NFSv4 I/O

60

Clients

Storage

NFSv4.1 Server

layout

H
 G

 k
 E

Parallel Declustered Object RAID

 File attributes replicated on first two component objects
 Components grow & new components created as data written
 Component objects include file data and file parity
 Declustered, randomized placement distributes RAID workload

 Per-file RAID equation creates fine-grain work items for rebuilds

C
 F

 E

20 OSD

Storage

Pool

Mirrored

or 9-OSD

Parity

Stripes

Read about

half of each

surviving

OSD

Write a little

to each OSD

Scales up in

larger

Storage

Pools

61

Panasas Scalable Rebuild

RAID rebuild rate increases with storage pool size
– Compare rebuild rates as the system size increases

– Unit of growth is an 11-blade Panasas “shelf”

• 4-u blade chassis with networking, dual power, and battery backup

System automatically picks stripe width
– 8 to 11 blade wide parity group

• Wider stripes slower

– Multiple parity groups

• Large files

Per-shelf rate scales
– 10 MB/s (old hardware)

• Reading at 70-90 MB/sec

• Depends on stripe width

– 30-50 MB/sec (current)

• Reading at 250-400 MB/sec

62

0

20

40

60

80

100

120

140

0 2 4 6 8 10 12 14

Shelves

One Volume, 1G Files

One Volume, 100MB Files

N Volumes, 1GB Files

N Volumes, 100MB Files

MB/sec Rebuild

width=11
width=8

scheduling

issue

width=9

RAID Summary

RAID was invented for performance, but used for

protection

Block RAID is suffering from increased drive sizes

Object RAID (or triplication) with parallel rebuild provides

fast recovery

Per-file RAID equations allow different

performance/protection for different files, and isolate bad

failures to individual files

Declustering spreads RAID workload uniformly over

large systems to reduce hot spots in parallel I/O

environments

63

What is a file system and a
parallel file system

64

File Systems Part 1

 Local file system structures as a building block

Network sharing, NAS vs. SAN

Composing things via kernel VFS layer

Compare different approaches

– SAN FS

– NFS

– Object FS

65

Role of the File System

Map logical file

structure to

physical storage

devices

66

File Systems

File systems have two key roles

– Organizing and maintaining the file name space

– Storing contents of files and their attributes

Networked file systems must solve two new problems

– File servers coordinate sharing of their data by many clients

– Scale-out storage systems coordinate actions of many servers

Parallel file systems (PFS) support parallel applications

– A special kind of networked file system that provides high-

performance I/O when multiple clients share the file system

– The ability to scale capacity and performance is an important

characteristic of a parallel file system implementation

67

Local File Systems

Persistent data structure

maps from a user’s

concept of a file to the

data and attributes for

that file.

Early research and

differentiation was all

about optimizing access

to a single device

UFS, EXT4, ZFS, NTFS,

XFS and BtrFS are local

file systems

Allocation
map

Indirect blocks

Journal

Data Data Data

Inode
Attributes

Lock state

Block pointers

B-Tree

Super

Block

68

RAID

Parallel File Systems

coordinate many clients

and many servers

RAID and Volume

Managers aggregate

devices safely

Scaling the File System

69

Disk

Host

Disk
Disk

Disk
Disk

Original POSIX

environment was

unshared, direct-

attached storage

Client
Client

Client
Client

Client

NAS/NFS introduces a

Network (Ethernet)

between clients and

server

Client
Client

Client
Client

Client

Client
Client

Client
Client

Client

Client
Client

Client
Client

Client

Network

SAN vs NAS

70

Network Attached

Storage (NAS)

Client
Client

Client
Client

Client

Client
Client

Client
Client

Client

Storage Area

Network (SAN)

Client
Client

Client
Client

Client

Ethernet or Infiniband

Fiber Channel, SAS, Ethernet, Infiniband

RAID

Distributed File System Functions

Data virtualization

– Striping or indirection to spread data among servers

– Global namespace that spans all servers, visible to all clients

Coordination (locking and synchronization)

– Among clients sharing files

– Among servers sharing physical devices

Fault tolerance

– For disk and server hard failures

– For power failures

– For software faults

– For network faults

– For client failures

71

Challenging Scenarios

Concurrent creates/deletes within a shared directory

– Who owns the lock?

– Who updates the directory?

– Who can read the directory?

ls –l in large active directory

– Who knows how big the files are, and their modify time?

Concurrent read/writer to a shared file

– Who knows how big the file is?

– Is read-ahead or caching feasible?

Concurrent writers to a shared file

– Who knows how big the file is?

 It is hard even when nothing goes wrong

72

SAN Shared Disk File Systems

73

SAN

Metadata

server

cluster

network
SCSI

Block

RAID

SAN FS Data Path

Client Client Client
App Write

RAID IO

Clients access RAID arrays over the SAN.

Control protocol with metadata server coordinates access to

shared disk via locking protocol

Local file system data structures are exposed to the clients

Metadata
Server

SCSI RPC

Coordination

•CXFS (SGI), Polyserve (HP), GFS

(RedHat), MPFSi (EMC), Exanet (Dell),

QFS (Sun), VMFS (Vmware)

•IBM GPFS has the most scalable

implementation

74

Network Attached Storage (NAS)

75

Local File
System

VFS API

NFSd server

NFS Client

VFS API

POSIX API

In kernel API layering to support NFS

Kernel VFS Layer

Virtual File System kernel API
– Invented in 1980’s when NFS came around

– Handles multiple local file systems as well

User Space Application

POSIX API

Generic Syscall Layer Network API nfsd

tmpfs ext3 panfs

VFS API

fuse

Network User App Disk RAM

76

Clustered NAS

NAS

Heads

77

Filer Pair
RAID

Filer Pair
RAID

Clustered NAS Data Path

Client Client Client Client Client

App Write

Server Forward

RAID IO

NFS clients mount a particular Filer. That filer will forward

operations to the Filer that owns storage for the file.

NFS

78

Isilon Server

Isilon Data Path

Isilon nodes compute parity and forward to others

Client

Client

Client

Client

Client

G
E

 N
e
tw

o
rk

IB
 N

e
tw

o
rk

Isilon Server

Isilon Server
• Application write

• Server computes parity

• Server forwards to others

NFS

79

Parallel File Systems

80

An example parallel file system, with large astrophysics

checkpoints distributed across multiple I/O servers (IOS)

while small bioinformatics files are each stored on a single

IOS

C C C C C

Comm. Network

PFS PFS PFS PFS PFS

IOS IOS IOS IOS

H01

/pfs

/astro

H03 /bio H06

H02
H05

H04

H01

/astro

/pfs

/bio

H02

H03

H04

H05 H06

chkpt32.nc

prot04.seq prot17.seq

Object Storage Architecture

Block Based Device Object Based Device

Source: Intel

Operations
 Create object

 Delete object

 Read object

 Write object

 Get Attribute

 Set Attribute

Addressing
 [object, byte range]

Allocation
 Internal

Operations
 Read block

 Write block

Addressing
 Block range

Allocation
 External

 SAN file systems use Disk interfaces (SCSI)

 NAS systems use File interfaces (VFS)

 Object interface is like a file w/out a name (Inode)
 iSCSI/OSD standard

81

Object-based Storage Clusters

 Lustre, PanFS, Ceph, PVFS

 File system layered over objects

– Details of block management hidden

by the object interface

– Metadata server manages

namespace, access control, and data

striping over objects

– Data transfer directly between OSDs

and clients

 High performance through clustering

– Scalable to thousands of clients

– 100+ GB/sec demonstrated to single

filesystem

82

Metadata

server(s)

Object storage devices

Lustre and GPFS Data Path

RAID Controller

Storage server Storage server

RAID Controller

Storage server Storage server

Client Client Client Client Client

App Write

Server Buffer

RAID IO

Lustre clients stripe data across Object Storage Servers (OSS),

which in turn write data through a RAID controller to Object Storage

Targets (OST). OST hides local file system data structures

GPFS has different metadata model but a similar data path

Control protocols to metadata servers are not shown

83

Panasas Parallel Data Path

Data path by-passes RAID controllers and metadata servers
– Control (RPC) path to metadata servers not shown here

– Application writes data

– DirectFlow/pNFS client layer generates redundant data for each stripe

– Everything is written directly to storage

– All blades work together on RAID rebuild

Client Client Client Client Client Client

Ethernet Network

84

The pNFS Standard

The pNFS standard defines the NFSv4.1 protocol

extensions between the server and client

The I/O protocol between the client and storage is

specified elsewhere, for example:

– SCSI Block Commands (SBC) over Fibre Channel (FC)

– SCSI Object-based Storage Device (OSD) over iSCSI

– Network File System (NFS)

The control protocol between the server and storage

devices is also specified elsewhere, for example:

– SCSI Object-based Storage Device (OSD) over iSCSI

85

Client
Storage

MetaData Server

pNFS Client

Common client for different storage back ends

Wider availability across operating systems

Fewer support issues for storage vendors

86

Client Apps

Layout

Driver

pNFS Client

pNFS Server

Cluster

Filesystem

1. SBC (blocks)

2. OSD (objects)

3. NFS (files)

4. PVFS2 (files)

5. Future backend…

Layout

metadata

grant & revoke

NFSv4.1

Linux Release Cycle 2011-2012

Kernel Merge Window What’s New

2.6.38 Jan 2011 More generic pNFS code, still disabled, not fully functional

2.6.39 Apr 2011 Files-based back end, read, write, commit on the client.

Linux server is read-only via pNFS.

3.0 Jun 2011 Object-based back end (RAID-1 only)

3.1 Sep 2011 Block-based back end

3.2 Dec 2011 Object RAID Engine adds RAID-5

3.3 Feb 2012 Bug Fixes

3.4 Apr 2012 iSCSI/OSD auto login

3.5 July 2012 Bug Fixes

RHEL 6 and SLES 11 based on 2.6.32
– Backporting pNFS is in progress

RHEL 7 and SLES 12 based on 3.*
– Integrated pNFS of all flavors – timeline 2013

87

Parallel File Systems

88

I/O for Computational Science

Additional I/O software provides improved performance and
usability over directly accessing the parallel file system. Reduces
or (ideally) eliminates need for optimization in application codes.

89

Goals for this section

 Introduce Lustre, GPFS, Panasas, HDFS

Compare different approaches to metadata

– Block Management

– File Create

Coordination protocols for correctness

– Caching

– Locking

Fault tolerance protocols for reliability

90

Production Parallel File Systems

GPFS, Lustre, Panasas support super computers
– Cielo, Hopper, MIRA

HDFS (Google FS) support map reduce (Hadoop)
Approaches to metadata vary
Approaches to fault tolerance vary
Emphasis on features, “turn-key” deployment, vary

91

GPFS

IBM GPFS

92

SAN storage

I/O
Servers

NSD
Clients

General Parallel File System

 Lots of configuration flexibility

– AIX, SP3, Linux

– Direct storage, Virtual Shared Disk,

Network Shared Disk

– Clustered NFS re-export

Block interface to storage nodes

Distributed locking

Blue Gene systems use GPFS

Blue Gene/Q Parallel Storage System

93

Panasas ActiveScale (PanFS)

94

Complete “appliance” solution (HW + SW), blade form factor
– DirectorBlade = metadata server

– StorageBlade = OSD

Coarse grained metadata

clustering

 Linux native client for

parallel I/O

NFS & CIFS re-export

 Integrated battery/UPS

 Integrated 10GE switch

Global namespace

94

iSCSI/OSD

OSDFS

Storage

Blade

1000+

SysMgr

PanFS

NFS/CIFS

Client

DirectorBlade

100+

Client

Compute Nodes

RPC

10,000+

PanFS at LANL

95

1 Director, 10 OSD each chassis

104 chassis in largest

single system, divided

over 12 subnets (lanes)

10 GE

10 GE

10 GE

PaScalBB

12 switches

RoadRunner

TLCC

Cielo

…

IO Nodes in each compute

cluster route between

HSN and 10GE

Lustre

 Open source object-based parallel
file system

– Based on CMU NASD architecture

– Lots of file system ideas from Coda
and InterMezzo

– ClusterFS acquired by Sun, 9/2007

– Sun acquired by Oracle 4/2009

– Whamcloud aquired by Intel, 2012

 Originally Linux-based; Sun ported
to Solaris

 Asymmetric design with separate
metadata server

 Proprietary RPC network protocol
between client & MDS/OSS

 Distributed locking with client-driven
lock recovery

96

MDS 2

(standby)

Lustre Object Storage

Servers (OSS, 100’s)

Metadata

Servers

Failover

MDS 1

(active)

Commodity

SAN or disks

Enterprise class

Raid storage

Failover

QSW Elan

Myrinet

IB

GigE

OSS1

OSS2

OSS3

OSS4

OSS5

OSS6

OSS7

Multiple storage

networks are supported

Lustre material from www.lustre.org and various talks

http://www.lustre.org/

Lustre file system on Hopper

97

Note: SCRATCH1 and SCRATCH2 have identical configurations.

Hadoop Environment

98

Compute

Data

Compute

Data

Compute

Data

Compute

Data

Compute

Data

Compute

Data

Compute

Data

Compute

Data

Data Node, Job Node in one box: lots of memory, local disks, ok network

Job is run on node with copy of its data- sometimes

Dedicated boxes host critical infrastructure services:

Name Node (memory limited), Job Scheduler, Zookeeper

Network infrastructure often oversubscribed

Low cost hardware, run until failure, offline service

HDFS and Google FS

Data Object is a 64 MB chunk of a file
– Replicated 3 times on different data nodes

Single Name Node keeps all metadata in main memory

Non-POSIX semantics
– Access via programming library

Exposes location information to Map-Reduce applications
– Map ships function to nodes with data; runs function on local data

– Reduce collects results of Map phase and generates answer

Hadoop is open source implementation
– Google has its own proprietary implementations

– Hadoop job scheduler, HDFS file system, Zookeeper configuration
management, Cassandra bigtables, many more

99

Comparing Parallel File Systems

Block Management

How Metadata is stored

What is cached, and where

Fault tolerance mechanisms

Management/Administration

100

Performance

Reliability

Manageability

Cost

Designer cares about Customer cares about

Block Management

Delegate block management to “object server”
– Panasas, Lustre, PVFS, HDFS

– I/O server uses local file system to store a chunk of a file

• Panasas OSDFS, Lustre ext4, PVFS (any), HDFS (any)

Distribute block management via locking
– GPFS, GFS2

– Nodes have their own part of the block map

There are lots of blocks to manage
– 8 billion 512B sectors on a 4T disk

– 40 million 4K pages on a 40G SSD

101

Data Distribution in Parallel File Systems

102

Locking in Parallel File Systems

Most parallel file systems use locks to manage concurrent
access to files

 Files are broken up into lock units

 Clients obtain locks on units that they will access before
I/O occurs

 Enables caching on clients as well (as long as client has a
lock, it knows its cached data is valid)

 Locks are reclaimed from clients when others desire
access

103

If an access touches any

data in a lock unit, the

lock for that region must

be obtained before access

occurs.

Locking and Concurrent Access

104

Delegating locks

File systems can delegate locking responsibilities to file

system clients

– Even CIFS does it for unshared file access (oplocks)

Replaces large grain file system lock units (e.g., many

blocks) with external (e.g., MPI-based) application

synchronization

– Application agrees not to write the same byte from different

processes

– Explicit barriers that flush data to storage and re-sync any

caches with storage

105

Meta Data

Metadata names files and describes where they are

located in the distributed system

– Inodes hold attributes and point to data blocks

– Directories map names to inodes

Metadata updates can create performance problems

Different approaches to metadata are illustrated via the

File Create operation

106

File: /home/sue/proj/moon.data

Metadata

Physical location of data

File Create on Local File System

 3 logical I/Os
– Journal update

– Directory insert

– Inode update

Performance determined by journal updates
– Or lack there of

– Details vary among systems

107

Fast Journal

device (SSD)

Dir

Inode

Inode Name

0017 Fred

2981 Yoshi

7288 Racheta

File Create on NFS Server

RPC
– Client to NFS server RPC

NVRAM update
– Mirrored copy on peer via RDMA

Reply to client

 Local I/O
– Done in the background

Performance from
– NVRAM+RDMA

108

NVRAM
Journal

RPC

RDMA

File Create on SAN FS

 Lock RPC for inode allocation

 Lock RPC for directory insert

 Journal update

SAN I/O for inode and directory
– Done in the background

Performance dependent on
– Journal updates

– Lock manager updates

– GPFS caches lock ownership

– SAN I/O

109

Lock RPC

RAID

File Create on Lustre

Client to Server RPC

Server creates local file to store metadata
– Journal update, local disk I/O

Server creates container object(s)
– Object create transaction with OSS

– OSS creates local file for object

Performance dependent on
– Local file systems on metadata

server and OSS/OST (modified ext3)

110

OST OST

OSS OSS

OST

OSS
MDS

Create File

Create

Object

Shadow

File System

File Create on PanFS

Client to Server RPC

MDS updates journal in NVRAM (locally and on backup)

MDS creates 2 container objects (iSCSI/OSD Create Object)
– OSDFS journals object create in NVRAM

– MDS annotates objects with its own metadata (as attributes)

Reply to client

Update directory (mirrored OSD write) in background

Performance dependent on
– Journal update to backup

– OSD Create object

111

OSD OSD OSD
PanFS

Create File

Create

Objects

NVRAM
Journal To backup

Data and

Metadata

in Objects

File Create on HDFS

RPC to Name Node

 Journal update

Container Create
– One on the client node

– One replica “in rack”

– One more replica “out of rack”

Performance depends on
– Metadata memory size

– Local file system updates on Data Nodes

112

Name Node

Client and

Local Copy

Remote

Copy1

Remote

Copy2

Caches

113

CPU/L1

L2/LLC

M
e

m
o

ry

Dir

Inode

Data

File

File Server

DRAM words cached on-chip in L1/L2 cache

Local disk block cached in main memory

Network remote data block cached in memory

Network remote data block cached on local disk

Spinning disk data block cached on SSD

Data object attributes cached by metadata service

File attributes cached by file system client

Dir Inode

Data File

network

S
S

D
 C

a
c
h
e

Caching

 In data server memory, in front of disk

– All systems do this for “clean” read data

– Delayed writes need battery protected memory

• RAID Controller, with mirroring

• Panasas StorageBlades, with integrated UPS

 In file system client, in front of network

– Need cache consistency protocol

– GPFS, DLM lock ownership protocol on blocks

– Lustre, some caching with DLM protocol

– Panasas, exclusive, read-only, read-write, concurrent write

caching modes with callback protocol

– PVFS, read-only client caching

– HDFS, read-only caching of immutable objects

114

Fault Tolerance

Combination of hardware and software ensures continued

operation in face of failures

Disk Failures

–Block RAID

–Object RAID or Triplication

Service Failure (software crash)

–Local journal

–Heartbeat protocols

Server Failures (hardware crash)

– Shared disk file system

–Journal replication to backup buddy

Client Failures

–Fencing (SAN zoning, Object Capabilities)

–GPFS clients members of global quorum

115

Journals

A Journal records what the system is going to do

– Record is made before file system is modified

– Protects local disk operations and remote objects operations

System consults journal after a crash

– Cleans up the file system w/out expensive sweep

– Critical for correctness in the face of faults in the system

Physical device for journal dictates performance

– No journal: fastest, but you have dirty crashes

– NVRAM replicated to backup

– 15K RPM disk

– RAID controller with battery-backed cache

– SSD

116

Design Comparison

GPFS HDFS Panasas Lustre

Block mgmt Shared

block map

Object based Object based Object based

Metadata

location

FS Disk

Structures

Name Node Object

Attributes

Shadow File

System

Metadata

written by

Client Server Client, server Server

Cache

coherency &

protocol

Coherent;

distributed

locking

Cache

immutable/RO

data only

Coherent;

callbacks

Coherent;

distributed

locking

Reliability Block RAID Triplication Object RAID Block RAID

117

Other Issues

What about…
– Monitoring & troubleshooting?

– Backups?

– Snapshots?

– Disaster recovery & replication?

– Capacity management?

– System expansion?

– Retiring old equipment?

– Limitations of POSIX

118

10%

90%

Development Effort

Data path

Everything
else

Other File Systems

Ceph (UCSC)
– OSD-based parallel filesystem

– Dynamic metadata partitioning between MDSs

– OSD-directed replication based on CRUSH distribution function
(no explicit storage map)

GlusterFS (Gluster)
– cloud storage

Fraunhofer (FhGFS)
– parallel file system

VMFS (Vmware)
– SAN FS optimized for storing VM images

Clustered NAS
– NetApp GX, Isilon, BlueArc, etc.

PVFS – OrangeFS
– User Space Parallel File System optimized for HPC

119

Workloads and
User Wish list

120

Why you might need to do I/O

Checkpoint/Restart files

– System or node could fail; protect your application so you don’t

have to start from the beginning

– Need to run longer than wall clock time allows

Analysis files

Visualization files

Out-of-core algorithms

121

Why is Scientific I/O so difficult?

• Scientists think about

data in terms of their

science problem:

molecules, atoms,

grid cells, particles

• Ultimately, physical

disks store bytes of

data

• Layers in between, the

application and

physical disks are at

various levels of

sophistication
Images from David Randall, Paola Cessi, John Bell, T Scheibe

122

Serial I/O

0 1 2 3 4

File

processors

• Each processor sends its data to the
master who then writes the data to a
file

5

• Advantages

• Simple

• May perform ok for very small IO sizes

• Disadvantages

• Not scalable

• Not efficient, slow for any large number
of processors or data sizes

• May not be possible if memory
constrained

123

Parallel I/O Multi-file

0 1 2 3 4

File File File File File

processors

•Advantages
• Simple to program

• Can be fast -- (up to a point)

•Disadvantages

• Can quickly accumulate many files

• Hard to manage

• Requires post processing

• Difficult for storage systems, HPSS, to handle many small files

• Can overwhelm the file system with many writers

5

File

•Each processor writes its own data to a separate file

124

Flash Center IO Nightmare…

• Large 32,000 processor run on LLNL BG/L

• Parallel IO libraries not yet available

• Intensive I/O application

– checkpoint files .7 TB, dumped every 4 hours, 200 dumps

• used for restarting the run

• full resolution snapshots of entire grid

– plotfiles - 20GB each, 700 dumps

• coarsened by a factor of two averaging

• single precision

• subset of grid variables

– particle files 1400 particle files 470MB each

• 154 TB of disk capacity

• 74 million files!

• Unix tool problems

• Took 2 years to sift though data, sew files together

125

Parallel I/O Single-file

0 1 2 3 4

File

processors

•Advantages

• Single file

• Manageable data

•Disadvantages

• Shared files may not perform as well as one-file-per-processor
models

5

•Each processor writes its own data to the same file using MPI-IO
mapping

126

Access Patterns

Memory

File

Contiguous

Memory

File

Contiguous in

memory, not in file

Memory

File

Contiguous in file,

not in memory

Memory

File

Dis-contiguous

Mem

File

Bursty
T

im
e

Memory

File

Out-of-Core

127

Parallel I/O:
A User Perspective

Wish List

– Write data from multiple processors into a single file

– File can be read in the same manner regardless of the

number of CPUs that read from or write to the file. (eg.

want to see the logical data layout… not the physical

layout)

– Do so with the same performance as writing one-file-per-

processor

– And make all of the above portable from one machine to

the next

Inconvenient Truth: Scientists need to understand

about I/O in order to get good performance

128

Benchmarking

129

Goals for this section

 Introduce different kinds of I/O workloads

Rules of thumb about performance

 Introduction to some standard benchmarks

130

Performance Basics

I/O Patterns

– Streaming (i.e., sequential)

• Start to finish

– Strided

• 4, 8, 12, 16, …

– Random

• 97, 32, 5, 1354, 1464, 765, …

Sharing Patterns

– File-per-process

– Shared-file

Metadata Operations

– File Create

– File Delete

– Set Attributes

– Get Attributes

– Directory lookups

– Directory tree walks

– File updates (i.e., writes)

What do you mean by “I/O”, by “Meta Data ops”?

131

Workloads

Streaming I/O

– Single client, one or more

streams per client

– Scaling clients

– System throughput, scaling

with system size (or not)

Random I/O

– Dependent on caching and

drive seek performance

Metadata

– Create/Delete workloads

– File tree walk (scans)

MPI IO

– Coordinated opens

– Shared output files

Interprocess Communication

– Producer/consumer files

– Message drop

– Atomic record updates

Small I/O

– Small whole file operations

– Small read/write operations

132

Performance Features

Streaming I/O

– Read-ahead

– Write buffering

• is there a battery?

Random I/O

– Large data cache

– SSD

Metadata

– Asynchronous file delete

– Stat pre-fetching to optimize

tree-walk

– NVRAM journal updates

MPI IO

– FS-specific Hints

Interprocess Communication

– Please use MPI

Small I/O

– Aggressive metadata cache

– Large data cache

– SSD

133

Benchmarking Pitfalls

Not measuring what you think you are measuring
– Most common with microbenchmarks

– For example, measuring write or read from cache rather than to storage

– Watch for “faster than the speed of light” results

Multi-client benchmarks without synchronization across nodes
– Measure aggregate throughput only when all nodes are transferring data

– Application with I/O barrier may care more about when last node finishes

134

Node 1

Node 2

Node 3

Node 1

Node 2

Node 3

 Benchmark that does not model application workload

– Different I/O size & pattern, different file size, etc.

Analyzing Results

Sanity-checking results: what is the “speed of light”

 Large sequential accesses
– Readahead can hide latency

– 7200 RPM SATA 60-100 MB/sec/spindle

– 15000 RPM FC 100-170 MB/sec/spindle

– SAS SSD 100-400 MB/sec/device

– SSD (PCIe) 1+ GB/sec/slot

Small random access
– Seek + rotate limited

– Readahead rarely helps (and sometimes hurts)

– 7200 RPM SATA avg access 15 ms, 75-100 ops/sec/spindle

– 15000 RPM FC avg access 6 ms, 150-300 ops/sec/spindle

– SSD (Sata) avg access <.1ms, 20K-50K ops/sec/device

– SSD (PCIe) avg access X us, 785K ops/sec

135

Rule of Thumb 1

Bigger is better

– Large files, large transfers, large numbers of clients generally

result in larger aggregate performance

But bigger isn’t always necessary

– 64K may be just as good as 4MB if read ahead is working

– Write buffering for less-than full stripe writes may or may

not hurt depending on the quality of the RAID controller

136

Rule of Thumb 2

Alignment of data access can be critical

– Sub-block, non-aligned accesses require pre-fetching and

buffering, at the minimum

– Additional locking overhead between threads can add further

overhead

Middleware can help

– MPI mechanisms shuffle data among data collectors and go to

the file system in large, aligned chunks

137

Rule of Thumb 3

Sharing has a cost

– Sharing between clients requires coordination by the file system,

and therefore has a cost

– E.g., 1024 different clients creating a file in the same directory

Sharing is important

– Some systems work hard to make sharing “perfect” so that

clients anywhere in the network have an up-to-date view of files

and their data

– NFS caching semantics cause tiny delays in visibility of new files

in a directory

Corollary

– A dedicated “one host, one wire, one disk” local file system can

be optimized in ways that are too expensive for shared network

storage systems to match

138

Rule of Thumb 4

Use MPI for Message Passing

– Some applications use the file system as a convenient

interprocess communication mechanism

• They should use a real message passing infrastructure instead

– This works OK at small scale with a single NFS filer, but has

horrible scaling properties because it involves the metadata

server in every message exchange

MPI IO has plenty of legitimate uses

– Coordinated I/O by many processes in one application

139

Rule of Thumb 5

Measure the Application
– Measuring your own application performance is the best test

– Different systems have different optimizations/bottlenecks

Corollary
– Parallel systems are excellent at finding serialization

Examples
– Single inode lock on directory limits create rate

– Small I/O may create multi-cycle RAID I/O

140

IOR: File System Bandwidth

Written at Lawrence Livermore National Laboratory

Named for the acronym ‘interleaved or random’

POSIX, MPI-IO, HDF5, and Parallel-NetCDF APIs

– Shared or independent file access

– Collective or independent I/O (when available)

Employs MPI for process synchronization

Used to obtain peak POSIX I/O rates for shared and

separate files

– Single Shared Output File:

./IOR -a POSIX -C -i 3 -t 4M -b 4G -e -v -v -o $FILE

– One File per Process (-F option)

./IOR -a POSIX -C -i 3 -t 4M -b 4G -e -v -v -F -o $FILE

141

IOR Access Patterns for Shared Files

 Primary distinction between the two major shared-file patterns is

whether each task’s data is contiguous or noncontiguous

 For the segmented pattern, each task stores its blocks of data in a

contiguous region in the file

 With the strided access pattern, each task’s data blocks are spread

out through a file and are noncontiguous

142

A B C

memory buffer

b b b b b b b

memory buffer memory buffer

a a a a a a a c c c c c c c

b a c b a c b a c b a c b a c b a c b a c

 - or -

Segmented File

Strided File

GPFS Access three ways

 POSIX shared vs MPI-IO collective
– Locking overhead in this un-aligned workload hits POSIX

– Communication (two-phase i/o optimization) hits MPI-IO

 Despite data management costs, file per process (fpp)
extremely seductive

 IOR the beginning, not end, of journey towards understanding
performance

143

Metadata Performance

Storage is more than reading & writing

Metadata operations change the namespace or file attributes

– Creating, opening, closing, and removing files

– Creating, traversing, and removing directories

– “Stat”ing files (obtaining the attributes of the file, such as permissions

and file size)

Several use cases exercise metadata subsystems:

– Interactive use (e.g. “ls -l”)

– File-per-process POSIX workloads

– Collectively accessing files through MPI-IO (directly or indirectly)

144

mdtest: Parallel Metadata Performance

 Measures performance of multiple tasks creating, stating, and
deleting both files and directories in either a shared directory or
unique (per task) directories

 Demonstrates potential serialization of multiple, uncoordinated
processes for directory access

 Written at Lawrence Livermore National Laboratory

 MPI code, processes synchronize for timing purposes

 Three variations:

– Each task creates 100 files in a unique subdirectory (-u option)

mdtest -d $DIR -n 100 -i 3 -N 1 -v -u

– One task creates 6400 files in one directory (-c option)

– Each task opens, removes its own

mdtest -d $DIR -n 100 -i 3 -N 1 -v -c

– Each task creates 100 files in a single shared directory

mdtest -d $DIR -n 100 -i 3 -N 1 -v

145

mdtest Variations

146

root dir

Shared Directory

A B C

a0

a99
a1 b0

b99
b1 c0

c99
c1

1) Each process (A,

B, C) creates,

stats, and removes

its own files in the

root directory.

A B C

root dir

subdir0

a0

a99
a1 b0

b99
b1 c0

c99
c1

subdir0 subdir0

Unique Directory (-u)

1) Each process (A, B,

C) creates own

subdir in root

directory, then

chdirs into it.

2) A, B, and C create,

stat, and remove

their own files in the

unique

subdirectories.

A B C

root dir

a0

a99
a1 b0

b99
b1 c0

c99
c1

Single Process (-c)

1) Process A creates

files for all

processes in root

directory.

2) Processes A, B,

and C open, stat,

and close their own

files.

3) Process A removes

files for all

processes.

Performance Disclaimer

The following relative results are shown to illustrate that

different systems have different performance trade-offs

The data is a few years old from a set of very different

systems, so only self-relative results are shown

Software updates and differences in hardware

configurations will potentially make big differences

=> You should run tests on your own platform

147

0

1

2

3

4

Lustre PVFS GPFS Panasas

S
p
e
e
d
u
p

unique dir shared dir

mdtest: Create File

148

single proc

Contested

Dir lock

Async

MetaData

Updates
Private

Dir Lock

No

Dir Lock

0

4

8

12

16

20

Lustre PVFS GPFS Panasas

S
p
e
e
d
u
p

unique dir shared dir

mdtest: Remove File

149

single proc

Meta Data

Cache

Contested

Dir lock

Background

Delete

mdtest: Stat File

150

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Lustre PVFS GPFS Panasas

S
p
e
e
d
u
p

unique dir shared dirsingle proc

Relatively little sharing penalty from read-only workload

POSIX I/O

(It stinks but everybody uses it)

151

POSIX I/O

POSIX is the IEEE Portable Operating System Interface

for Computing Environments

 “POSIX defines a standard way for an application

program to obtain basic services from the operating

system”

– Mechanism almost all serial applications use to perform I/O

POSIX was created when a single computer owned its

own file system

152

What’s wrong with POSIX?

 It’s a useful, ubiquitous interface for basic I/O

 It lacks constructs useful for parallel I/O

– Cluster application is really one program running on N nodes,

but looks like N programs to the filesystem

– No support for noncontiguous I/O

– No hinting/prefetching

 Its rules hurt performance for parallel apps

– Atomic writes, read-after-write consistency

– Attribute freshness

POSIX should not have to be used (directly) in parallel

applications that want good performance

– But developers use it anyway

153

Deficiencies in serial interfaces

Typical (serial) I/O calls seen in applications

No notion of other processors

Primitive (if any) data description methods

Tuning limited to open flags

No mechanism for data portability

– Fortran not even portable between compilers

154

POSIX:

fd = open(“some_file”, O_WRONLY|O_CREAT,
 S_IRUSR|S_IWUSR);
ret = write(fd, w_data, nbytes);
ret = lseek(fd, 0, SEEK_SET);
ret = read(fd, r_data, nbytes);
ret = close(fd);

FORTRAN:

OPEN(10, FILE=‘some_file’, &
 STATUS=“replace”, &
 ACCESS=“direct”, RECL=16);
WRITE(10, REC=2) 15324
CLOSE(10);

The MPI-IO Interface

155

I/O for Computational Science

Additional I/O software provides improved performance and
usability over directly accessing the parallel file system. Reduces
or (ideally) eliminates need for optimization in application codes.

156

MPI-IO

 I/O interface specification for use in MPI apps

Data model is same as POSIX

– Stream of bytes in a file

Features:

– Collective I/O

– Noncontiguous I/O with MPI datatypes and file views

– Nonblocking I/O

– Fortran bindings (and additional languages)

– System for encoding files in a portable format (external32)

• Not self-describing - just a well-defined encoding of types

 Implementations available on most platforms (more later)

157

Simple MPI-IO

Collective open: all processes in communicator

File-side data layout with file views

Memory-side data layout with MPI datatype passed to write

158

MPI_File_open(COMM, name, mode,
 info, fh);
MPI_File_set_view(fh, disp, etype,
 filetype, datarep, info);
MPI_File_write_all(fh, buf, count,
 datatype, status);

MPI_File_open(COMM, name, mode,
 info, fh);
MPI_File_set_view(fh, disp, etype,
 filetype, datarep, info);
MPI_File_write_all(fh, buf, count,
 datatype, status);

Independent and Collective I/O

 Independent I/O operations specify only what a single process will do

– Independent I/O calls do not pass on relationships between I/O on other processes

 Many applications have phases of computation and I/O

– During I/O phases, all processes read/write data

– We can say they are collectively accessing storage

 Collective I/O is coordinated access to storage by a group of processes

– Collective I/O functions are called by all processes participating in I/O

– Allows I/O layers to know more about access as a whole, more opportunities for
optimization in lower software layers, better performance

159

P0 P1 P2 P3 P4 P5 P0 P1 P2 P3 P4 P5

Independent I/O Collective I/O

Contiguous and Noncontiguous I/O

 Contiguous I/O moves data from a single memory block into a single file region

 Noncontiguous I/O has three forms:

– Noncontiguous in memory, noncontiguous in file, or noncontiguous in both

 Structured data leads naturally to noncontiguous I/O (e.g. block decomposition)

 Describing noncontiguous accesses with a single operation passes more knowledge
to I/O system

160

Process 0 Process 0

Noncontiguous

in File

Noncontiguous

in Memory

Ghost cell

Stored element

…
Vars 0, 1, 2, 3, … 23

Extracting variables from a block and

skipping ghost cells will result in

noncontiguous I/O.

Data Sieving Optimization

 One large request better than several smaller operations
 Data sieving for writes is more complicated than for reads

– Must read the entire region first (1)
– Then make changes in buffer (2)
– Then write the block back (3)

 Requires locking in the file system
– Can result in false sharing (interleaved access)

 PFS supporting noncontiguous writes is preferred

161

Buffer

Memory

File

Data Sieving Write Transfers

1

2

3

8192 process IOR: 25x difference

between small and large I/O req

Collective I/O and Two-Phase I/O

 Problems with independent, noncontiguous access

– Lots of small accesses

– Independent data sieving reads lots of extra data, can exhibit false sharing

 Idea: Reorganize access to match layout on disks

– Single processes use data sieving to get data for many

– Often reduces total I/O through sharing of common blocks

 Second “phase” redistributes data to final destinations

 Two-phase writes operate in reverse (redistribute then I/O)

– Typically read/modify/write (like data sieving)

– Overhead is lower than independent access because there is little or no false sharing

 Note that two-phase is usually applied to file regions, not to actual blocks

162

Two-Phase Read Algorithm

p0 p1 p2 p0 p1 p2 p0 p1 p2

Phase 1: I/O Initial State Phase 2: Redistribution

Two-Phase I/O Algorithms

163

For more information, see W.K. Liao and A. Choudhary, “Dynamically Adapting File Domain Partitioning Methods for Collective I/O Based on

Underlying Parallel File System Locking Protocols,” SC2008, November, 2008.

S3D Turbulent Combustion Code

 S3D is a turbulent combustion

application using a direct numerical

simulation solver from Sandia

National Laboratory

 Checkpoints consist of four global

arrays

– 2 3-dimensional

– 2 4-dimensional

– 50x50x50 fixed

subarrays

Thanks to Jackie Chen (SNL), Ray Grout

(SNL), and Wei-Keng Liao (NWU) for

providing the S3D I/O benchmark, Wei-

Keng Liao for providing this diagram, C.

Wang, H. Yu, and K.-L. Ma of UC Davis for

image.

164

Impact of Optimizations on S3D I/O

 Testing with PnetCDF output to single file, three configurations,
16 processes

– All MPI-IO optimizations (collective buffering and data sieving) disabled

– Independent I/O optimization (data sieving) enabled

– Collective I/O optimization (collective buffering, a.k.a. two-phase I/O) enabled

165

Coll. Buffering

and Data Sieving

Disabled

Data Sieving

Enabled

Coll. Buffering

Enabled (incl.

Aggregation)

POSIX writes 102,401 81 5

POSIX reads 0 80 0

MPI-IO writes 64 64 64

Unaligned in file 102,399 80 4

Total written (MB) 6.25 87.11 6.25

Runtime (sec) 1443 11 6.0

Avg. MPI-IO time

per proc (sec)

1426.47 4.82 0.60

Example: Visualization Staging

 Large frames must be preprocessed before display on a tiled display

 First step in process is extracting “tiles” that will go to each projector

– Perform scaling, etc.

 Parallel I/O can be used to speed up reading of tiles

– One process reads each tile

 We’re assuming a raw RGB format with a fixed-length header

166

Tile 0

Tile 3

Tile 1

Tile 4 Tile 5

Tile 2

MPI Subarray Datatype

 MPI_Type_create_subarray can describe any N-dimensional subarray

of an N-dimensional array

 In this case we use it to pull out a 2-D tile

 Tiles can overlap if we need them to

 Separate MPI_File_set_view call uses this type to select the file region

167

frame_size[1]

fr
a

m
e

_
s
iz

e
[0

]

Tile 4

tile_start[1] tile_size[1]

tile
_

s
ta

rt[0
] tile

_
s
iz

e
[0

]

Opening the File, Defining RGB Type

MPI_Datatype rgb, filetype;

MPI_File filehandle;

ret = MPI_Comm_rank(MPI_COMM_WORLD, &myrank);

/* collectively open frame file */

ret = MPI_File_open(MPI_COMM_WORLD, filename,
MPI_MODE_RDONLY, MPI_INFO_NULL, &filehandle);

/* first define a simple, three-byte RGB type */

ret = MPI_Type_contiguous(3, MPI_BYTE, &rgb);

ret = MPI_Type_commit(&rgb);

/* continued on next slide */

168

Defining Tile Type Using Subarray

/* in C order, last array

 * value (X) changes most

 * quickly

 */

frame_size[1] = 3*1024;

frame_size[0] = 2*768;

tile_size[1] = 1024;

tile_size[0] = 768;

tile_start[1] = 1024 * (myrank % 3);

tile_start[0] = (myrank < 3) ? 0 : 768;

ret = MPI_Type_create_subarray(2, frame_size,
tile_size, tile_start, MPI_ORDER_C, rgb,
&filetype);

ret = MPI_Type_commit(&filetype);

169

frame_size[1]

fr
a

m
e

_
s
iz

e
[0

]

Tile 4

tile_start[1] tile_size[1]

tile
_
s
ta

rt[0
]

tile
_

s
iz

e
[0

]

Reading Noncontiguous Data

/* set file view, skipping header */

ret = MPI_File_set_view(filehandle,
file_header_size, rgb, filetype, "native",
MPI_INFO_NULL);

/* collectively read data */

ret = MPI_File_read_all(filehandle, buffer,
tile_size[0] * tile_size[1], rgb, &status);

ret = MPI_File_close(&filehandle);

170

 MPI_File_set_view is the MPI-IO mechanism for describing

noncontiguous regions in a file

 In this case we use it to skip a header and read a subarray

 Using file views, rather than reading each individual piece, gives the

implementation more information to work with (more later)

 Likewise, using a collective I/O call (MPI_File_read_all) provides

additional information for optimization purposes (more later)

Under the Covers of MPI-IO

MPI-IO implementation given a lot of information in this

example:

– Collection of processes reading data

– Structured description of the regions

 Implementation has some options for how to perform the

data reads

– Noncontiguous data access optimizations

– Collective I/O optimizations

171

MPI-IO Implementations

 Different MPI-IO implementations exist

 Three better-known ones are:

– ROMIO from Argonne National Laboratory

• Leverages MPI-1 communication

• Supports local file systems, network file systems,
parallel file systems

– UFS module works GPFS, Lustre, and others

• Includes data sieving and two-phase optimizations

– MPI-IO/GPFS from IBM (for AIX only)

• Includes two special optimizations

– Data shipping -- mechanism for coordinating access to a file to
alleviate lock contention (type of aggregation)

– Controlled prefetching -- using MPI file views and access patterns
to predict regions to be accessed in future

– MPI from NEC

• For NEC SX platform and PC clusters with Myrinet, Quadrics, IB, or
TCP/IP

• Includes listless I/O optimization -- fast handling of noncontiguous I/O
accesses in MPI layer

172

Common Functionality

ADIO Interface

UFS

MPI-IO Interface

NFS XFS PVFS
ROMIO’s layered architecture.

MPI-IO Wrap-Up

MPI-IO provides a rich interface allowing us to describe

– Noncontiguous accesses in memory, file, or both

– Collective I/O

This allows implementations to perform many

transformations that result in better I/O performance

 Ideal location in software stack for file system specific

quirks or optimizations

Also forms solid basis for high-level I/O libraries

– But they must take advantage of these features!

173

I/O Forwarding

174

I/O for Computational Science

Additional I/O software provides improved performance and
usability over directly accessing the parallel file system. Reduces
or (ideally) eliminates need for optimization in application codes.

175

I/O Forwarding
Software

Gateway nodesCompute nodes

I/ O forwarding software runs on

compute and gateway nodes and

bridges between the compute nodes

and external storage.

run I/O forwarding software
intercepting I/O calls from
application and forwarding to
gateway nodes

run I/O forwarding software
accepting I/O requests from
compute nodes and forward
to parallel file system

176

Cray’s Data Virtualization Service (DVS)

 A distributed network service that allows other file

systems besides Lustre (GPFS, Panasas, NFS) to be

used on the XT/XE systems

 DVS servers forward data to the underlying file system

and forward results back to DVS client

 Light-weight DVS client installed on compute nodes

 Also used to enable shared library applications on

Hopper

177

IB IB

Direct-Attach Lustre

Compute

Nodes

(Lustre client)

IO Nodes
(Lustre server

Lustre file system)

RAID

Lustre Server

Luster FS

RAID

External Lustre

IO Nodes
(Lustre Router)

GPFS Server

GPFS

RAID

IO Nodes
(DVS Server

GPFS Client)

Compute

Nodes

(Lustre client)

Compute

Nodes

(DVS client)

External GPFS

Comparison of Direct Attached Lustre, External
Lustre, and Alternate External File Systems

178

Panasas and DVS at LANL

Cray XE6

Application

DVS Client

VFS

Application

DVS Client

VFS

Application

DVS Client

VFS

Application

DVS Client

VFS
.

 compute

Nodes

PanFS

Cluster

PanFS Server
PanFS Server

PanFS Server

10 GbE

Switch

PanFS Server
PanFS Server

PanFS Server

PanFS Server
PanFS Server

PanFS Server

IO Nodes

DVS Server

PanFS Client

VFS

DVS Server

PanFS Client

VFS

DVS Server

PanFS Client

VFS

DVS Server

PanFS Client

VFS

DVS Server

PanFS Client

VFS

DVS Server

PanFS Client

VFS

Once again, the only

inter-subnet traffic is for

PanFS metadata

servers

DVS clients send I/O

requests to DVS

servers based on the

PanFS file object

layout

PanFS clients only

receive I/O requiests

for file objects on the

connected subnet

179

I/O Architectures: Similarities

 Compute nodes with indirect access to storage

 I/O nodes that form a bridge to the storage
system
– Lnet, DVS, ciod

 External network fabric connecting HPC system
to storage

 Collection of storage servers and enterprise
storage hardware providing reliable, persistent
storage

180

I/O architectures at large scale have
converged to a common model.

The Parallel netCDF
Interface and File Format

181

Thanks to Wei-Keng Liao, Alok

Choudhary, and Kui Gao (NWU) for

their help in the development of

PnetCDF.

I/O for Computational Science

Additional I/O software provides improved performance and
usability over directly accessing the parallel file system. Reduces
or (ideally) eliminates need for optimization in application codes.

182

Higher Level I/O Interfaces

Provide structure to files

– Well-defined, portable formats

– Self-describing

– Organization of data in file

– Interfaces for discovering contents

Present APIs more appropriate for computational science

– Typed data

– Noncontiguous regions in memory and file

– Multidimensional arrays and I/O on subsets of these arrays

Both of our example interfaces are implemented on top of

MPI-IO

183

Parallel NetCDF (PnetCDF)

 Based on original “Network Common Data Format” (netCDF) work
from Unidata

– Derived from their source code

 Data Model:

– Collection of variables in single file

– Typed, multidimensional array variables

– Attributes on file and variables

 Features:

– C, Fortran, and F90 interfaces

– Portable data format (identical to netCDF)

– Noncontiguous I/O in memory using MPI datatypes

– Noncontiguous I/O in file using sub-arrays

– Collective I/O

– Non-blocking I/O

 Unrelated to netCDF-4 work

 Parallel-NetCDF tutorial:

– http://trac.mcs.anl.gov/projects/parallel-netcdf/wiki/QuickTutorial

184

http://trac.mcs.anl.gov/projects/parallel-netcdf/wiki/QuickTutorial
http://trac.mcs.anl.gov/projects/parallel-netcdf/wiki/QuickTutorial
http://trac.mcs.anl.gov/projects/parallel-netcdf/wiki/QuickTutorial

Data Layout in netCDF Files

185

Record Variables in netCDF

Record variables are defined to have

a single “unlimited” dimension

– Convenient when a dimension size is

unknown at time of variable creation

Record variables are stored after all

the other variables in an interleaved

format

– Using more than one in a file is likely to

result in poor performance due to number

of noncontiguous accesses

186

Storing Data in PnetCDF

Create a dataset (file)

– Puts dataset in define mode

– Allows us to describe the contents

• Define dimensions for variables

• Define variables using dimensions

• Store attributes if desired (for variable or dataset)

Switch from define mode to data mode to write variables

Store variable data

Close the dataset

187

Example: FLASH Astrophysics

 FLASH is an astrophysics code for

studying events such as

supernovae

– Adaptive-mesh hydrodynamics

– Scales to 1000s of processors

– MPI for communication

 Frequently checkpoints:

– Large blocks of typed variables

from all processes

– Portable format

– Canonical ordering (different than

in memory)

– Skipping ghost cells

188

Ghost cell

Stored element

…
Vars 0, 1, 2, 3, … 23

Example: FLASH with PnetCDF

FLASH AMR structures do not map directly to netCDF

multidimensional arrays

Must create mapping of the in-memory FLASH data

structures into a representation in netCDF

multidimensional arrays

Chose to

– Place all checkpoint data in a single file

– Impose a linear ordering on the AMR blocks

• Use 4D variables

– Store each FLASH variable in its own netCDF variable

• Skip ghost cells

– Record attributes describing run time, total blocks, etc.

189

Defining Dimensions

int status, ncid, dim_tot_blks, dim_nxb,
dim_nyb, dim_nzb;

MPI_Info hints;

/* create dataset (file) */

status = ncmpi_create(MPI_COMM_WORLD, filename,
NC_CLOBBER, hints, &file_id);

/* define dimensions */

status = ncmpi_def_dim(ncid, "dim_tot_blks",
tot_blks, &dim_tot_blks);

status = ncmpi_def_dim(ncid, "dim_nxb",
nzones_block[0], &dim_nxb);

status = ncmpi_def_dim(ncid, "dim_nyb",
nzones_block[1], &dim_nyb);

status = ncmpi_def_dim(ncid, "dim_nzb",
nzones_block[2], &dim_nzb);

190

Each dimension gets

a unique reference

Creating Variables

int dims = 4, dimids[4];

int varids[NVARS];

/* define variables (X changes most quickly) */

dimids[0] = dim_tot_blks;

dimids[1] = dim_nzb;

dimids[2] = dim_nyb;

dimids[3] = dim_nxb;

for (i=0; i < NVARS; i++) {

status = ncmpi_def_var(ncid, unk_label[i],
NC_DOUBLE, dims, dimids, &varids[i]);

}

191

Same dimensions used

for all variables

Storing Attributes

/* store attributes of checkpoint */

status = ncmpi_put_att_text(ncid, NC_GLOBAL,
"file_creation_time", string_size,
file_creation_time);

status = ncmpi_put_att_int(ncid, NC_GLOBAL,
"total_blocks", NC_INT, 1, tot_blks);

status = ncmpi_enddef(file_id);

/* now in data mode … */

192

Writing Variables

double *unknowns; /* unknowns[blk][nzb][nyb][nxb]
*/

size_t start_4d[4], count_4d[4];
start_4d[0] = global_offset; /* different for each

process */
start_4d[1] = start_4d[2] = start_4d[3] = 0;
count_4d[0] = local_blocks;
count_4d[1] = nzb; count_4d[2] = nyb;

count_4d[3] = nxb;
for (i=0; i < NVARS; i++) {

/* ... build datatype “mpi_type” describing
values of a single variable ... */

/* collectively write out all values of a
single variable */

ncmpi_put_vara_all(ncid, varids[i], start_4d,
count_4d, unknowns, 1, mpi_type);

}
status = ncmpi_close(file_id);

193

Typical MPI buffer-count-type

tuple

Inside PnetCDF Define Mode

 In define mode (collective)

– Use MPI_File_open to create file at create time

– Set hints as appropriate (more later)

– Locally cache header information in memory

• All changes are made to local copies at each process

At ncmpi_enddef

– Process 0 writes header with MPI_File_write_at

– MPI_Bcast result to others

– Everyone has header data in memory, understands placement of

all variables

• No need for any additional header I/O during data mode!

194

Inside PnetCDF Data Mode

 Inside ncmpi_put_vara_all (once per variable)

– Each process performs data conversion into internal buffer

– Uses MPI_File_set_view to define file region

• Contiguous region for each process in FLASH case

– MPI_File_write_all collectively writes data

At ncmpi_close

– MPI_File_close ensures data is written to storage

MPI-IO performs optimizations

– Two-phase possibly applied when writing variables

MPI-IO makes PFS calls

– PFS client code communicates with servers and stores data

195

Inside Parallel netCDF: Jumpshot view

196

1: Rank 0 write header

(independent I/O)

2: Collectively write

app grid, AMR data

3: Collectively

 write 4 variables

4: Close file

I/O

Aggregator

Collective write File open File close Indep. write

PnetCDF Wrap-Up

PnetCDF gives us

– Simple, portable, self-describing container for data

– Collective I/O

– Data structures closely mapping to the variables described

 If PnetCDF meets application needs, it is likely to give

good performance

– Type conversion to portable format does add overhead

Some limits on (old, common CDF-2) file format:

– Fixed-size variable: < 4 GiB

– Per-record size of record variable: < 4 GiB

– 232 -1 records

– New extended file format to relax these limits (CDF-5, released in

pnetcdf-1.1.0)

197

The HDF5 Interface and
File Format

198

HDF5

Hierarchical Data Format, from the HDF Group (formerly
of NCSA)

Data Model:
– Hierarchical data organization in single file

– Typed, multidimensional array storage

– Attributes on dataset, data

Features:
– C, C++, and Fortran interfaces

– Portable data format

– Optional compression (not in parallel I/O mode)

– Data reordering (chunking)

– Noncontiguous I/O (memory and file) with hyperslabs

Parallel HDF5 tutorial:
– http://www.hdfgroup.org/HDF5/Tutor/parallel.html

199

http://www.hdfgroup.org/HDF5/Tutor/parallel.html
http://www.hdfgroup.org/HDF5/Tutor/parallel.html

HDF5 Groups and Links

lat	lon	temp
 12 | 23 | 3.1
 15 | 24 | 4.2
 17 | 21 | 3.6

Experiment Notes:

Serial Number: 99378920

Date: 3/13/09

Configuration: Standard 3

/

SimOut Viz

HDF5 groups

and links

organize

data objects.

200

HDF5 Dataset

Data Metadata
Dataspace

3

Rank

Dim_2 = 5

Dim_1 = 4

Dimensions

Time = 32.4

Pressure = 987

Temp = 56

(optional)

Attributes

Chunked

Compressed

Dim_3 = 7

Properties

Integer

Datatype

201

HDF5 Dataset

Dataspace: Rank = 2

 Dimensions = 5 x 3

202

Datatype: 16-byte integer

3

5

 V

HDF5 Dataspaces

Two roles:
Dataspace contains spatial information (logical layout) about

a dataset

 stored in a file
• Rank and dimensions

• Permanent part of dataset
definition

Subsets: Dataspace describes application’s data buffer and
data elements participating in I/O

Rank = 2

Dimensions = 4x6

Rank = 1

Dimension = 10

203

Basic Functions

H5Fcreate (H5Fopen) create (open) File

 H5Screate_simple/H5Screate create dataSpace

 H5Dcreate (H5Dopen) create (open) Dataset

 H5Sselect_hyperslab select subsections of data

 H5Dread, H5Dwrite access Dataset

 H5Dclose close Dataset

 H5Sclose close dataSpace

H5Fclose close File

NOTE: Order not strictly specified.

204

205

P0

P1
File

Example: Writing dataset by rows

P2

P3
NY

NX

206

Writing by rows: Output of h5dump

HDF5 ”grid_rows.h5" {

GROUP "/" {

 DATASET "dataset1" {

 DATATYPE H5T_IEEE_F64LE

 DATASPACE SIMPLE { (8, 5) / (8, 5) }

 DATA {

 18, 18, 18, 18, 18,

 18, 18, 18, 18, 18,

 19, 19, 19, 19, 19,

 19, 19, 19, 19, 19,

 20, 20, 20, 20, 20,

 20, 20, 20, 20, 20,

 21, 21, 21, 21, 21,

 21, 21, 21, 21, 21

 }

 }

}

Initialize the file for parallel access

/* first initialize MPI */

/* create access property list */

plist_id = H5Pcreate(H5P_FILE_ACCESS);

/* necessary for parallel access */

status = H5Pset_fapl_mpio(plist_id,

MPI_COMM_WORLD, MPI_INFO_NULL);

/* Create an hdf5 file */

file_id = H5Fcreate(FILENAME, H5F_ACC_TRUNC,

H5P_DEFAULT, plist_id);

status = H5Pclose(plist_id);

207

Create file dataspace and dataset

 /* initialize local grid data */

/* Create the dataspace */

dimsf[0] = NX;

dimsf[1] = NY;

filespace = H5Screate_simple(RANK, dimsf,NULL);

/* create a dataset */

dset_id = H5Dcreate(file_id, "dataset1”,

H5T_NATIVE_DOUBLE, filespace, H5P_DEFAULT, H5P_DEFAULT,

H5P_DEFAULT);

208

Create Property List

/* Create property list for collective dataset

write. */

plist_id = H5Pcreate(H5P_DATASET_XFER);

/* The other option is HDFD_MPIO_INDEPENDENT */

H5Pset_dxpl_mpio(plist_id,H5FD_MPIO_COLLECTIVE);

209

210

P0

P1
File

Calculate Offsets

P2

P3
NY

NX

Every processor has a 2d array, which holds the number

of blocks to write and the starting offset

211

Memory
File

Example: Writing dataset by rows

count[0] = dimsf[0]/num_procs
count[1] = dimsf[1];
offset[0] = my_proc * count[0]; /* = 2 */
offset[1] = 0;

count[0]

count[1]

offset[0]

offset[1]

Process 1

212

Writing and Reading Hyperslabs

Distributed memory model: data is split among processes

PHDF5 uses HDF5 hyperslab model

Each process defines memory and file hyperslabs

Each process executes partial write/read call

– Collective calls

– Independent calls

213

Create a Memory Space select hyperslab

/* Create the local memory space */
memspace = H5Screate_simple(RANK, count, NULL);

filespace = H5Dget_space (dset_id);

/* Create the hyperslab -- says how you want to
lay out data */

status = H5Sselect_hyperslab(filespace,
H5S_SELECT_SET, offset, NULL, count, NULL);

214

Write Data

status = H5Dwrite(dset_id, H5T_NATIVE_DOUBLE,
memspace, filespace, plist_id, grid_data);

Identifier for dataset

“dataset1”
Datatype

Access Properties:

We choose collective.

This is where other

optimizations could be

added.

Data buffer

Then close every dataspace and file space that was opened

Inside HDF5: Jumpshot view

215

1: Rank 0 writes initial structure

(multiple independent I/O)

3: Determine location

For variable (orange)

5: Rank 0 writes

final md

6: Close file 2: Collectively write

grid, provenance data

4: Collectively write

variable (blue)

Collective write File open File close Indep. write MPI_Allreduce

HDF5 Wrap-up

Tremendous flexibility: 300+ routines

H5Lite high level routines for common cases

Tuning via property lists

– “use MPI-IO to access this file”

– “read this data collectively”

Extensive on-line documentation, tutorials (see “On Line

Resources” slide)

New efforts:

– Journaling: make datasets more robust in face of crashes

(Sandia)

– Fast appends (finance motivated)

– Single-writer, Multiple-reader semantics

– Aligning data structures to underlying file system

216

Comparing I/O libraries

 IOR to evaluate HDF5, pnetcdf somewhat artificial
– HLL typically hold structured data

HDF5, pnetcdf demonstrate performance parity for these
access sizes (4 MiB)

Some performance overhead in using HLL
– Honestly more than expected

217

Other High-Level I/O libraries

 NetCDF-4: http://www.unidata.ucar.edu/software/netcdf/netcdf-4/

– netCDF API with HDF5 back-end

 ADIOS: http://adiosapi.org

– Configurable (xml) I/O approaches

 SILO: https://wci.llnl.gov/codes/silo/

– A mesh and field library on top of HDF5 (and others)

 H5part: http://vis.lbl.gov/Research/AcceleratorSAPP/

– simplified HDF5 API for particle simulations

 GIO: https://svn.pnl.gov/gcrm

– Targeting geodesic grids as part of GCRM

 PIO:

– climate-oriented I/O library; supports raw binary, parallel-netcdf, or serial-

netcdf (from master)

 … Many more: my point: it's ok to make your own.

218

http://www.unidata.ucar.edu/software/netcdf/netcdf-4/
http://www.unidata.ucar.edu/software/netcdf/netcdf-4/
http://www.unidata.ucar.edu/software/netcdf/netcdf-4/
http://www.unidata.ucar.edu/software/netcdf/netcdf-4/
http://adiosapi.org/
http://adiosapi.org/
https://wci.llnl.gov/codes/silo/
https://wci.llnl.gov/codes/silo/
https://svn.pnl.gov/gcrm
https://svn.pnl.gov/gcrm

Parallel I/O Wrap-up

Assess the cost benefit of using shared file parallel-IO for

the lifetime of your project

– How much overhead can you afford?

– Slower runtime, could save years of post-processing, visualization

and analysis time later

Use high level parallel I/O libraries over MPI-IO.

– They don’t cost you performance (sometimes improve it)

– Gain: portability, longevity, programmability

MPI-IO is the layer where most optimizations are

implemented – tune these parameters carefully

Watch out for the key parallel-I/O pitfalls – unaligned block

sizes and small writes

– MPI-IO layer can often solve these pitfalls on your behalf.

219

Lightweight Application
Characterization with Darshan

Thanks to Phil Carns (carns@mcs.anl.gov) for
providing background material on Darshan.

220

mailto:carns@mcs.anl.gov

Characterizing Application I/O

How are are applications using the I/O system, and how
successful are they at attaining high performance?

Darshan (Sanskrit for “sight”) is a tool we developed for I/O
characterization at extreme scale:

 No code changes, small and tunable memory footprint (~2MB default)

 Characterization data aggregated and compressed prior to writing

 Captures:

– Counters for POSIX and MPI-IO operations

– Counters for unaligned, sequential, consecutive, and strided
access

– Timing of opens, closes, first and last reads and writes

– Cumulative data read and written

– Histograms of access, stride, datatype, and extent sizes

221

http://www.mcs.anl.gov/darshan/

P. Carns et al, “24/7 Characterization of Petascale I/O Workloads,” IASDS Workshop, held

in conjunction with IEEE Cluster 2009, September 2009.

221

The Darshan Approach

Use PMPI and ld wrappers to intercept I/O functions

– Requires re-linking, but no code modification

– Can be transparently included in mpicc

– Compatible with a variety of compilers

Record statistics independently at each process

– Compact summary rather than verbatim record

– Independent data for each file

Collect, compress, and store results at shutdown time

– Aggregate shared file data using custom MPI reduction operator

– Compress remaining data in parallel with zlib

– Write results with collective MPI-IO

– Result is a single gzip-compatible file containing characterization

information

222

Example Statistics (per file)

 Counters:

– POSIX open, read, write, seek, stat, etc.

– MPI-IO nonblocking, collective, indep., etc.

– Unaligned, sequential, consecutive, strided access

– MPI-IO datatypes and hints

 Histograms:

– access, stride, datatype, and extent sizes

 Timestamps:

– open, close, first I/O, last I/O

 Cumulative bytes read and written

 Cumulative time spent in I/O and metadata operations

 Most frequent access sizes and strides

 Darshan records 150 integer or floating point parameters per file, plus

job level information such as command line, execution time, and

number of processes.

223

sequential

consecutive

strided

1 2 3

1 2 3

1 2 3

Darshan Job Summary

224

 Job summary tool shows

characteristics “at a

glance”; available to all

users

 Shows time spent in read,

write, and metadata

 Operation counts, access

size histogram, and

access pattern

 Early indication of I/O

behavior and where to

explore in further

 Example: Mismatch

between number of files

(R) vs. number of header

writes (L)

 The same header is being

overwritten 4 times in each

data file

224

225 225

A Data Analysis I/O Example

Why does the I/O take so long in this case?

226

 Variable size analysis data requires headers to contain size information

 Original idea: all processes collectively write headers, followed by all processes

collectively write analysis data

 Use MPI-IO, collective I/O, all optimizations

 4 GB output file (not very large)

…

Process

es

I/O Time

(s)

Total Time

(s)

8,192 8 60

16,384 16 47

32,768 32 57

A Data Analysis I/O Example (continued)

227

 Problem: More than 50% of time spent writing

output at 32K processes. Cause: Unexpected

RMW pattern, difficult to see at the application

code level, was identified from Darshan

summaries.

 What we saw instead: RMW during the writing shown by overlapping red

(read) and blue (write), and a very long write as well.

 What we expected to see, read data followed

by write analysis:

A Data Analysis I/O Example (continued)

228

 Solution: Reorder operations to combine

writing block headers with block payloads,

so that "holes" are not written into the file

during the writing of block headers, to be

filled when writing block payloads. Also fix

miscellaneous I/O bugs; both problems

were identified using Darshan.

 Result: Less than 25% of time spent

writing output, output time 4X shorter,

overall run time 1.7X shorter.

 Impact: Enabled parallel Morse-Smale

computation to scale to 32K processes on

Rayleigh-Taylor instability data. Also used

similar output strategy for cosmology

checkpointing, further leveraging the

lessons learned.

Process

es

I/O Time

(s)

Total Time

(s)

8,192 7 60

16,384 6 40

32,768 7 33

Two Months of Application I/O on ALCF
Blue Gene/P

 After additional testing and

hardening, Darshan installed on

Intrepid

 By default, all applications

compiling with MPI compilers are

instrumented

 Data captured from late January

through late March of 2010

 Darshan captured data on 6,480

jobs (27%) from 39 projects (59%)

 Simultaneously captured data on

servers related to storage utilization

229

Top 10 data producers and/or

consumers shown. Surprisingly,

most “big I/O” users read more data

during simulations than they wrote.

P. Carns et al, “Storage Access Characteristics of Computational Science Applications,”

forthcoming.

229

Application I/O on ALCF Blue Gene/P

Application Mbytes/

sec/CN*

Cum. MD Files/P

roc

Creates/

Proc

Seq.

 I/O

Mbytes/P

roc

EarthScience 0.69 95% 140.67 98.87 65% 1779.48

NuclearPhysics 1.53 55% 1.72 0.63 100% 234.57

Energy1 0.77 31% 0.26 0.16 87% 66.35

Climate 0.31 82% 3.17 2.44 97% 1034.92

Energy2 0.44 3% 0.02 0.01 86% 24.49

Turbulence1 0.54 64% 0.26 0.13 77% 117.92

CombustionPhysics 1.34 67% 6.74 2.73 100% 657.37

Chemistry 0.86 21% 0.20 0.18 42% 321.36

Turbulence2 1.16 81% 0.53 0.03 67% 37.36

Turbulence3 0.58 1% 0.03 0.01 100% 40.40

230

P. Carns et al, “Storage Access Characteristics of Computational Science Applications,” forthcoming.

* Synthetic I/O benchmarks (e.g., IOR) attain 3.93 - 5.75 Mbytes/sec/CN for modest

job sizes, down to approximately 1.59 Mbytes/sec/CN for full-scale runs.

230

Darshan Summary

Scalable tools like Darshan can yield useful insight

– Identify characteristics that make applications successful

– Identify problems to address through I/O research

Petascale performance tools require special

considerations

– Target the problem domain carefully to minimize amount of data

– Avoid shared resources

– Use collectives where possible

For more information:

http://www.mcs.anl.gov/research/projects/darshan

231

Wrapping Up

We've covered a lot of ground in a short time
– Very low-level, serial interfaces

– High-level, hierarchical file formats

Storage is a complex hardware/software system

There is no magic in high performance I/O
– Lots of software is available to support computational science

workloads at scale

– Knowing how things work will lead you to better performance

Using this software (correctly) can dramatically improve
performance (execution time) and productivity
(development time)

232

Printed References

 John May, Parallel I/O for High Performance Computing,

Morgan Kaufmann, October 9, 2000.

– Good coverage of basic concepts, some MPI-IO, HDF5, and

serial netCDF

– Out of print?

 William Gropp, Ewing Lusk, and Rajeev Thakur, Using

MPI-2: Advanced Features of the Message Passing

Interface, MIT Press, November 26, 1999.

– In-depth coverage of MPI-IO API, including a very detailed

description of the MPI-IO consistency semantics

233

On-Line References (1 of 4)

 netCDF and netCDF-4
– http://www.unidata.ucar.edu/packages/netcdf/

PnetCDF
– http://www.mcs.anl.gov/parallel-netcdf/

ROMIO MPI-IO
– http://www.mcs.anl.gov/romio/

HDF5 and HDF5 Tutorial
– http://www.hdfgroup.org/

– http://www.hdfgroup.org/HDF5/

– http://www.hdfgroup.org/HDF5/Tutor

POSIX I/O Extensions
– http://www.opengroup.org/platform/hecewg/

Darshan I/O Characterization Tool
– http://www.mcs.anl.gov/research/projects/darshan

234

On-Line References (2 of 4)

 PVFS
http://www.pvfs.org

 Panasas
http://www.panasas.com

 Lustre
http://www.lustre.org

 GPFS
http://www.almaden.ibm.com/storagesystems/file_systems/GPFS/

235

http://www.pvfs.org/
http://www.pvfs.org/
http://www.panasas.com/
http://www.panasas.com/
http://www.lustre.org/
http://www.lustre.org/
http://www.almaden.ibm.com/storagesystems/file_systems/GPFS/

On-Line References (3 of 4)

 LLNL I/O tests (IOR, fdtree, mdtest)

– http://www.llnl.gov/icc/lc/siop/downloads/download.html

Parallel I/O Benchmarking Consortium (noncontig, mpi-

tile-io, mpi-md-test)

– http://www.mcs.anl.gov/pio-benchmark/

FLASH I/O benchmark

– http://www.mcs.anl.gov/pio-benchmark/

– http://flash.uchicago.edu/~jbgallag/io_bench/ (original version)

 b_eff_io test

– http://www.hlrs.de/organization/par/services/models/mpi/b_eff_io/

mpiBLAST

– http://www.mpiblast.org

236

http://www.unidata.ucar.edu/software/netcdf/netcdf-4/

On Line References (4 of 4)

NFS Version 4.1

– 5661: NFSv4.1 protocol

– 5662: NFSv4.1 XDR Representation

– 5663: pNFS Block/Volume Layout

– 5664: pNFS Objects Operation

 pNFS Problem Statement

– Garth Gibson (Panasas), Peter Corbett (Netapp), Internet-draft,

July 2004

– http://www.pdl.cmu.edu/pNFS/archive/gibson-pnfs-problem-statement.html

 Linux pNFS Kernel Development
– http://www.citi.umich.edu/projects/asci/pnfs/linux

237

Acknowledgements

This work is supported in part by U.S. Department of

Energy Grant DE-FC02-01ER25506, by National Science

Foundation Grants EIA-9986052, CCR-0204429, and CCR-

0311542, and by the U.S. Department of Energy under

Contract DE-AC02-06CH11357.

Thanks to Rajeev Thakur (ANL), Bill Loewe (Panasas), and

Marc Unangst (Panasas) for their help in creating this

material and presenting this tutorial in prior years.

238

