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“There is no physics without I/O.”  
– Anonymous Physicist 

SciDAC Conference 
June 17, 2009 

(I think he might have been kidding.) 

“Very few large scale applications of 
practical importance are NOT data 

intensive.” 

 – Alok Choudhary, IESP, Kobe Japan, April 2012 

(I know for sure he was not kidding.) 
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About Us 

 Rob Latham (robl@mcs.anl.gov) 
– Senior Software Developer, MCS Division, Argonne National Laboratory 

– ROMIO MPI-IO implementation 

– Parallel netCDF high-level I/O library 

– Application outreach 

 Rob Ross (rross@mcs.anl.gov) 
– Computer Scientist, MCS Division, Argonne National Laboratory 

– Parallel Virtual File System 

– High End Computing Interagency Working Group (HECIWG) for File Systems and I/O  

 Brent Welch (welch@panasas.com) 
– Chief Technology Officer, Panasas 

– Berkeley Sprite OS Distributed Filesystem 

– Panasas ActiveScale Filesystem 

– IETF pNFS 

 Katie Antypas (kantypas@lbl.gov) 
– Group Lead for User Services, NERSC 

– Guides application groups towards efficient use of NERSC's Lustre and GPFS file 
systems. 

– Collaborates with HDF5 Group and Cray's MPI-IO developers to improve application 
I/O performance. 
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Computational Science 

 Use of computer simulation as a tool for 
greater understanding of the real world 

– Complements experimentation and theory 

 Problems are increasingly computationally 
expensive 

– Large parallel machines needed to 
perform calculations 

– Critical to leverage parallelism in all 
phases 

 Data access is a huge challenge 

– Using parallelism to obtain performance 

– Finding usable, efficient, and portable 
interfaces 

– Understanding and tuning I/O 
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Visualization of entropy in Terascale 

Supernova Initiative application. Image from 

Kwan-Liu Ma’s visualization team at UC Davis. 

IBM Blue Gene/P system at Argonne 

National Laboratory. 



Data Volumes in Computational Science 

PI Project 

On-line 
Data 
(TBytes) 

Off-line 
Data 
(TBytes) 

Lamb Supernovae Astrophysics 100 400 

Khokhlov Combustion in Reactive 
Gases 

1 17 

Lester CO2 Absorption 5 15 

Jordan Seismic Hazard Analysis 600 100 

Washington Climate Science 200 750 

Voth Energy Storage Materials 10 10 

Vashista Stress Corrosion Cracking 12 72 

Vary Nuclear Structure and 
Reactions 

6 30 

Fischer Reactor Thermal Hydraulic 
Modeling 

100 100 

Hinkel Laser-Plasma Interactions 60 60 

Elghobashi Vaporizing Droplets in a 
Turbulent Flow 

2 4 

Data requirements for select 2012 INCITE 
applications at ALCF (BG/P) 

Top 10 data producer/consumers 

instrumented with Darshan over the 

month of July, 2011. Surprisingly, 

three of the top producer/consumers 

almost exclusively read existing data. 
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Application Dataset 
Complexity vs I/O 
 

Aneurysm 

Right Interior 

Carotid Artery 

Platelet 

Aggregation 

Model complexity: 

Spectral element mesh (top) 

for thermal hydraulics 

computation coupled with 

finite element mesh (bottom) 

for neutronics calculation. 

Scale complexity: 

Spatial range from 

the reactor core in 

meters to fuel pellets 

in millimeters. 
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Images from T. Tautges (ANL) (upper left), M. Smith 

(ANL) (lower left), and K. Smith (MIT) (right). 

 I/O systems have very simple 
data models 

– Tree-based hierarchy of containers 

– Some containers have streams of bytes 
(files) 

– Others hold collections of other containers 
(directories or folders) 

 Applications have data models 
appropriate to domain 

– Multidimensional typed arrays, images 
composed of scan lines, variable length 
records 

– Headers, attributes on data 

 Someone has to map from one 
to the other! 



Challenges in Application I/O 

 Leveraging aggregate communication and I/O 
bandwidth of clients 
– …but not overwhelming a resource limited I/O system with 

uncoordinated accesses! 

 Limiting number of files that must be managed 
– Also a performance issue 

Avoiding unnecessary post-processing 

Often application teams spend so much time on this that 
they never get any further: 
– Interacting with storage through convenient abstractions 

– Storing in portable formats 

 

Parallel I/O software is available that can address all 
of these problems, when used appropriately. 
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I/O for Computational Science 

Additional I/O software provides improved performance and 
usability over directly accessing the parallel file system. Reduces 
or (ideally) eliminates need for optimization in application codes. 
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Parallel File System 

 Manage storage hardware 

– Present single view 

– Stripe files for performance 

 

 In the I/O software stack 

– Focus on concurrent, independent access 

– Publish an interface that middleware can use effectively 

• Rich I/O language 

• Relaxed but sufficient semantics 
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I/O Forwarding 

Present in some of the largest systems 
– Provides bridge between system and 

storage in machines such as the 
Blue Gene/P 

 

Allows for a point of aggregation, hiding 
true number of clients from underlying 
file system 

 

Poor implementations can lead to 
unnecessary serialization, hindering 
performance 



I/O Middleware 

 Match the programming model 

(e.g. MPI) 

 Facilitate concurrent access by 
groups of processes 
– Collective I/O 

– Atomicity rules 

 Expose a generic interface 
– Good building block for high-level libraries 

 Efficiently map middleware operations into PFS ones 
– Leverage any rich PFS access constructs, such as: 

• Scalable file name resolution 

• Rich I/O descriptions 
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High Level Libraries 

 Match storage abstraction 

to domain 

– Multidimensional datasets 

– Typed variables 

– Attributes 

 Provide self-describing, structured files 

 Map to middleware interface 

– Encourage collective I/O 

 Implement optimizations that middleware cannot, such as 

– Caching attributes of variables 

– Chunking of datasets 
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What we’ve said so far… 

Application scientists have basic goals for interacting with 

storage 

– Keep productivity high (meaningful interfaces) 

– Keep efficiency high (extracting high performance from hardware) 

Many solutions have been pursued by application teams, 

with limited success 

– This is largely due to reliance on file system APIs, which are poorly 

designed for computational science 

Parallel I/O teams have developed software to address 

these goals 

– Provide meaningful interfaces with common abstractions 

– Interact with the file system in the most efficient way possible 
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Storage Hardware 
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Storage Hardware 

Bits: painted on metal oxide, or semi-conductor 

Speed hierarchy (CPU, DRAM, Networking, SSD, Disk) 

Storage devices: mechanical (disk, tape) and electronic (SSD) 

For performance, many devices in parallel 

Failures: bit rot, device failure.   

More devices, more failures 

For reliability, add hardware redundancy and lots of software 

Software has bugs, so recovery techniques are necessary 
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Storage Bits 

Magnetic bits on disk and tape 

– Stable w/out power 

– Encoding techniques use N+M bits to store N user bits 

– Relatively cheap to manufacture 

– Small amounts of electronics for large numbers of bits 

Semi-conductor bits 

– DRAM, constant power draw 

– FLASH, stable w/out power – with caveats 

• Write/Erase cycles wear down the device 

• 10 year storage when new 

• 1 year storage when old 

– At least 10x the cost to manufacture electronic bits compared to 

magnetic bits 
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Why can’t we junk all the disks  

Storage Hierarchy is DRAM, FLASH, Disk, Tape 

Cannot manufacture enough bits via Wafers vs. Disks 

– SSD 10x per-bit cost, and the gap isn’t closing 

– Cost of semiconductor FAB is >> cost of disk manufacturing facility 

– World-wide manufacturing capacity of semi-conductor bits is perhaps 

1% the capacity of making magnetic bits 

• 500 Million disks/year (2012 est) avg 1TB => 500 Exabytes (all manufacturers) 

• 30,000 wafers/month (micron), 4TB/wafer (TLC) => 1.4 Exabytes (micron) 

And Tape doesn’t go away, either 

– Still half the per-bit cost, and much less lifetime cost 

– Tape is just different 

 no power at rest 

 physical mobility 

 higher per-device bandwidth (1.5x to 2x) 
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Bandwidth Hierarchy 
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CPU CPU 
Memory 

8 GT/s => 64 GB/sec 

8 Bytes every two cycles in both directions 

2 chan, 866Mhz 

 => 12 GB/sec 

3 chan, 1.3 Ghz 

=> 30 GB/sec 

QPI QPI 

PCIe 

24 lanes 

8 Gb/lane 

=> 24 GB/s 

NIC SAS 
HBA 

HDD 

FDR IB 

56 Gb/s 

SAS 

6 Gb/s 

8x 8x 

8x 

PCIe 

150 MB/s SAS 
Switch 

28x 

SSD 
450 MB/s 

nanoseconds 

microseconds 

milliseconds 

B Bytes 

b Bits 



Networking Speeds and Feeds 

Network Encoding Physical Raw Effective 

FDR IB 66/64 4x 14 Gb/s 56 Gb/s 6+ GB/s 

QDR IB 8/10 4x 10 Gb/s 40 Gb/s 4 GB/s 

40 GE 10/12.5 4x 10 Gb/s 40 Gb/s 5 GB/s 

10 GE 10/12.5 1x 10 Gb/s 10 Gb/s 1.25 GB/s 

20 

100 Gb/s (4x 25 Gb/s) projected for 2015 

 

Network adaptor cards and their PCIe interface also limits throughput and 

affects latency for small packets 

 

PCIe3, 8 Gb/s per channel and 66/64 encoding 

PCIe2, 5 Gb/s per channel and 8/10 encoding 

 

8x PCIe2 is ample for dual 10GE 

16x PCIe3 is a match for dual FDR IB 

 



Bandwidth 

CPU sockets have lots of it 

– To memory 

– To PCIe lanes 

High speed networks have a decent amount 

– Affected by protocol (CPU) overhead 

Storage devices are lagging behind 

– Especially hard drives 

– SSD write performance isn’t super great, either 
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Storage Devices 

Magnetic Hard Disk 

Drives 

Solid State Storage Devices (flash) 

Magnetic Tape 
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Platter 

Spindle 

Head 

Actuator 

LTO 6 

2.5 TB, 160 MB/sec 



Drive Characteristics 

Capacity (in MB, GB, TB) 

– Function of areal density 

– Areal density = track density * linear density 

– Sector is 512 bytes, moving to 4K 

Transfer Rate (bandwidth) – MB/sec 

– Rate at which a device reads or writes data 

– 1-250 MB/sec depending on seeks 

Access Time (milli-seconds) 

– Delay before the first byte is read 

– Seek time plus (avg) rotational delay 

– 8.33 msec for full rotation at 7200 RPM 

– 1 msec track-to-track seek (or less) 

– 20-30 msec “full stroke” seek (or more) 

 

More sectors per track 

on outer cylinders 

Only one head active 

at a time, either 

reading or writing 
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Base-2 vs Base-10 measurements 

24 

Unit Base-10 Base-2 % diff 

KB / KiB 10^3 2^10 = 1,024 2.5% 

MB / MiB 10^6 2^20 = 1,048,576 5.0% 

GB / GiB 10^9 2^30 = 1,073,741,824 7.5% 

TB / TiB 10^12 2^40 = 1,099,511,627,776 10% 

PB / PiB 10^15 2^50 = 1,125,899,906,842,624 12.5% 

EB / EiB 10^18 2^60 = 1,152,921,504,606,846,976 15% 

Storage vendors sell in base-10 units (Megabyte)  

 Even though a disk sector is an even power of 2 

 512 bytes or 4096 bytes 

 

Computer scientists often think in base-2 units (Mebibyte) 

 Even though they use base-10 unit terms 

GB - Bytes 

Gb - Bits 



Capacity vs Bandwidth 

Areal density increases by 40% per year 

– Per drive capacity increases by 50% to 100% per year 

– 2008: 500 GB 

– 2009: 1 TB 

– 2010: 2 TB 

– 2011: 3 TB 

– 2012: 4 TB 

Drive interface speed increases by 15-20% per year 

– 2008: 500 GB disk (WD RE2):  98 MB/sec 

– 2009: 1 TB disk (WD RE3):  113 MB/sec (+15%) 

– 2010: 2 TB disk (WD RE4): 138 MB/sec (+22%) 

Takes longer and longer to completely read each new 

generation of drive 
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Disk Transfer Rates over Time 

Thanks to R. Freitas of IBM Almaden Research Center for providing much of the data for this graph. 
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5 minutes to read 315 MB disk 

At 1 MB/sec (IBM 3350) 

25 minutes to read 440 GB disk 

At 280 MB/sec (Cheetah 15K.6) 

11 hours to read 4 TB SATA 

At 50 MB/sec 



FLASH and SSD 
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SSD 

 Interface 

– SATA, SAS, PCIe, NVMexpress 

– Non-disk, PCIe interfaces for low overhead 

Controller 

– Wear leveling, garbage collection, data integrity 

DRAM 

– Fast copy of Flash Translation Layer 

– Write buffer (optional) 

FLASH 

– Many packages to increase concurrency 
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SSD Components 

SATA or SAS 

Nvm express 

mSATA 
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Controller 

FLASH 

DRAM 



FLASH Characteristics 

Non-volatile 
– Each bit is stored in a “floating gate” that holds value without power 

– Electrons can leak, so shelf life and write count is limited 

Page-oriented 
– Smaller (e.g., 8K) read/write block based on addressing logic 

– Larger (e.g., 1MB) erase block to amortize the time it takes to erase 

 Flash Translation Layer (FTL)  

– allows wear leveling 

– requires garbage collection 

Performance 
– Fast reads (no seeks) 

– Slower writes 

– Slow erase cycles 

– Background tasks cause 

interference (1 to 10 msec) 
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http://icrontic.com/articles/how_ssds_work 



FLASH Reliability 

SLC – Single Level Cell 

– One threshold, one bit 

– 105 to 106 write cycles per 

page 

MLC – Multi Level Cell 

– Multiple thresholds, multiple 

bits (2 bits) 

– N bits requires 2N Vt levels 

– 104 write cycles per page 

– Denser and cheaper, but 

slower and less reliable 

TLC – Triple Level Cell 

– Cheapest, slowest writes 

– 500 write cycles per page! 
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http://www.micron.com/nandcom/ 



FLASH Translation Layer (FTL) 
 Level of indirection supports wear leveling 

– Page map indirection allows controller to write to any free page 

– Page write may trigger background copies and erases 

Wear leveling is critical 

– Different pages will wear out at different times depending on how 

often each page is written 

– Pages in an Erase Block have to be garbage collected together 

Over provisioning 

– 120 GB device is physically 128GB to support wear leveling 
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4K Data 

Logical Page Address 

ECC and Checksum State 

Physical Page 
128 Byte Header 

Vendors are on 2nd (or 3rd) 

generation algorithms 



FLASH Trends 

Serial interface speed getting faster 

Write speeds getting slower 

Page size increases from 4K to 8K or 16K 

Erase block increases from 256K to 1M 

Multiple channels per package allow more concurrent 

operations 

High speed devices use many packages and stripe data 

to get high bandwidth 

Power failure protection for volatile DRAM inside the 

device 
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Future Technologies 
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Figure courtesy Micron 
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Figure courtesy Micron 



STT MRAM 

Magnetoresistive RAM 

– Store bit in magnetic field 

– No power to hold value 

– Low power read/write 

STT  

– Spin Torque Transfer 

– Low power, fast 

Everspin 

– Shipping 4Mb parts 

– Annouced 16Mb part 

– SRAM or Flash interface 

 Long term winner 

– Same feature size as DRAM? 

 

 
Courtesy http://en.wikipedia.org/wiki/User:Cyferz 

37 



Phase Change Memory 

 Based on state change instead 
of stored electrons 

– Crystalline vs. amorphous 

– Germanium-Antimony-
Tellurium (GST) 
chalcogenide glass 

 Change state by heating to 
650ºC and then cooling 

– Cool quickly ⇒ amorphous 

– Cool slowly ⇒ crystalline 

 Samsung, Micron shipping 
devices now (128Mb) 

– 1,000,000 overwrites 

 Maybe DRAM replacement in 
2015? 

– Byte addressible, but limited writes 

– Much lower power (no refresh) 
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Courtesy http://en.wikipedia.org/wiki/User:Cyferz 



RAID and Erasure Codes 
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The Disk Bandwidth/Reliability Problem 

Disks are slow: use lots of them in a parallel file system 

However, disks are unreliable, and lot’s of disks are even 
more unreliable 

 

• This simple two-disk system is twice as fast, but half as reliable, as a 

single-disk system 
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RAID Overview 

RAID is a way to aggregate multiple physical devices into a 

larger virtual device 

– Redundant Array of Inexpensive Disks 

– Redundant Array of Independent Devices 

 Invented by Patterson, Gibson, Katz, et al 

– http://www.cs.cmu.edu/~garth/RAIDpaper/Patterson88.pdf 

Redundant data is computed and stored so the system can 

recover from disk failures 

– RAID was invented for bandwidth 

– RAID was successful because of its reliability 
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RAID and Data Protection 

RAID equation generates redundant data:  
– P = A xor B xor C xor D  (encoding) 

– B = P xor A xor C xor D  (data recovery) 

A B D C P 
=> ^ ^ ^ 

 RAID equations are “erasure codes” because you can 

erase something (i.e., lose a disk) and get it back using 

the erasure code 
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RAID levels 

0 – None 
Stripe data over disks, no protection against failures 

1 – Mirroring 

2- Hamming codes, bit-level parity 

3- XOR ECC, arm-locked, byte-level parity 

4- XOR ECC, parity stripe unit 

5- XOR ECC, rotated parity stripe unit 

6- Multiple failure protection 
Reed-Solomon very popular 

Other erasure codes exist 

10 (really 1+0)- both striped and mirrored 
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Rotating parity 

RAID-4 

  D D D D P 

  D D D D P 

  D D D D P 

RAID-5 

  D D D D P 

  D D D P D (left-symmetric) 

  D D P D D 

RAID-6 

  D D D P Q 

  D P Q D D (left-symmetric dual parity) 

  Q D D D P 

 Rotating parity 

diffuses the load from 

parity updates across 

all spindles 

Spindle 

Stripe 
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The Small Write Problem 

When you only write part of a stripe, you need to 
compute parity across data blocks that aren’t in-hand 

Two approaches 
– Large write: read the unwritten components 

– Small write: read the written components 

 

 

 

 4-cycle write to update one disk 
– Read old value of C 

– XOR with new value of C and save the result in T 

– Write new value of C 

– Read old value of P 

– XOR T and old P, write the result as the new P 
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A B D C P 
=> ^ ^ ^ 



Erasure codes / Reed Solomon 

Used to provide additional levels of protection 

N is the number of redundancy units 

– May tolerate N failures 

• N=2: P, Q 

– May detect and correct up to N-1 corruptions 

First redundancy unit is a simple XOR 

– Thus, RAID-5 is equivalent to Reed-Solomon with N=1  

– Additional redundancy units require more complex math (Galois Field) 

Failures versus corruption 

– Tolerate up to N failures 

– Detect and repair up to N-1 corruptions 
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The problem with RAID 

Traditional block-oriented RAID protects and rebuilds entire 

drives 

– Drive capacity increases have outpaced drive bandwidth 

– It takes longer to rebuild each new generation of drives 

– Media defects on surviving drives interfere with rebuilds 

We need faster rebuilds, and a way to handle media defects 

A 

=> ^ ^ ^ 

B C D P 
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Blade Capacity and Speed History 

Compare time to write a blade 

(two disks) from end-to-end over 

4* generations of Panasas blades 
SB-4000 same family as SB-6000 

Capacity increased 39x 

Bandwidth increased 3.4x 

(function of CPU, memory, disk) 

Time goes from 44 min to > 8 hrs 0

100

200

300

400

500

600

SB-160 SB-800 SB-2000 SB-4000 SB-6000

Minutes to Erase 2-drive Blade

0

1000

2000

3000

4000

5000

6000

7000

SB-160 SB-800 SB-2000 SB-4000 SB-6000

Capacity in GB of 2-drive Blade

0

50

100

150

200

250

SB-160 SB-800 SB-2000 SB-4000 SB-6000

Local 2-Disk Bandwidth in MB/Sec
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Improving RAID 

 Improving rebuild times 

– Declustered parity groups provide more disk bandwidth 

– Parallel rebuild algorithms provide more XOR and memory bandwidth 

– Declustered rebuilds reduce hot spots 

 Improving resilience to media defects 

– Vertical parity across sectors to fix more media defects 

– Per-file RAID equation creates small fault domain 

– “Too many” cause loss of one file, not the whole RAID array 
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Traditional RAID Organization 

Multiple RAID Groups 

– 2 Groups, each 2 Data + 1 Parity in this simple example 

Global spare disk 

F1 

K1 

H1 

J2 

G1 

L1 

FP JP 

HP J1 

G2 

L2 

F2 

K2 

H2 

KP 

GP LP 

S3 S1 S2 
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Traditional RAID Rebuild 

Group with failed drive is busy with reads 

Global spare is busy with writes 

Other RAID groups do not participate 

Uneven utilization slows down parallel I/O using all groups 

F1 

K1 

H1 

J2 

G1 

L1 

FP JP 

HP J1 

G2 

L2 

F2 

K2 

H2 

KP 

GP LP 

S3 S1 S2 
Failed drive 

Read Write 

Controller performs XOR 
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Declustering Step 1 

Subdivide devices into multiple partitions 

– F1 xor F2 => FP 

– H1 xor H2 => HP 

– etc 

F1 

J1 

H1 

G2 

H2 

J2 

FP S1 

S2 HP 

G1 

K1 

F2 

K2 

L1 

GP 

LP L2 

S3 JP KP 
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Declustering Step 2 

Shuffle data and parity blocks 

Each device has at most one piece of a group 

– Must not lose two pieces with one device failure 

F1 

K1 

H1 

J2 

G1 

L1 

FP S1 

S2 J1 

G2 

L2 

F2 

K2 

H2 

KP 

GP LP 

S3 HP JP 
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Declustering Step 3 

Spread out Spare space, too 

Placement constraints on what spare can be used 

– Cannot result in two pieces of a group on one device 

F1 

K1 

H1 

J2 

G1 

L1 

FP JP 

HP J1 

G2 

L2 

F2 

K2 

H2 

KP 

GP LP 

S3 S1 S2 
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Declustered RAID Rebuild 

Failed drive 

Read during rebuild Write during rebuild Unused during rebuild 

F1 

K1 

H1 

J2 

G1 

L1 

FP JP 

HP J1 

G2 

L2 

F2 

K2 

H2 

KP 

GP LP 

S3/F1 S1/K1 S2/H1 

Every surviving drive contributes bandwidth 

Same I/O spread over more spindles 

– Reading 2 drives worth of data 

– Writing 1 drive worth of data 

– 6 spindles active 
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Declustered RAID Rebuild 

Failed drive 

Read during rebuild Write during rebuild Unused during rebuild 

F1 

K1 

H1 

J2 

G1 

L1 

FP JP 

HP J1 

G2 

L2 

F2 

K2 

H2 

KP 

GP LP 

S3/L2 S1/H2 S2/H2 

Perfect placement is a hard problem 

– Mark Holland dissertation from 90’s 
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Triplication and Google FS (and HDFS) 

Consider data nodes plus their disks as a single failure 

domain 

Triplicate file (chunks) and spread among data nodes 

 Just like declustering, the rebuild workload is diffused 

among the data nodes 

Data nodes can do their work in parallel 
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File (Virtual Object) 

Object RAID 

Per-file data protection 

Small files (<64K) mirrored in two component objects 

 Large files use RAID encoding across several component 

objects 

Parallel file system stores its metadata in object attributes 

– All attributes are mirrored on first two component objects that were 

created 

– Remaining component objects have just a few attributes 

– Attributes include map, parent, size, date stamps, owner, ACL 

Data 

Attrs 

Object 
Data 

Attrs 

Object 
Data 

Attrs 

Object 
Data 

Attrs 

Object 
Parity 

Attrs 

Object 
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Object RAID 

Object RAID protects and rebuilds files 

– Failure domain is a file, which is typically much, much smaller than 

the physical storage devices 

– File writer can be responsible for generating redundant data, which 

avoids central RAID controller bottleneck 

– Different files sharing same devices can have different RAID 

configurations to vary their level of data protection and performance 

F1 F2 F3 FP ^ ^ => 

G1 G2 G3 GP ^ ^ => GQ 

H1 HM => 

, 

RAID 4 

RAID 6 

RAID 1 
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pNFS Layouts 

Client gets a layout from the NFS Server 

The layout maps the file onto storage devices and addresses 

– Object-based layouts support per-file RAID 

The client uses the layout to perform direct I/O to storage 

At any time the server can recall the layout 

Client commits changes and returns the layout when it’s done 

 pNFS is optional, the client can always use regular NFSv4 I/O 
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Clients 

Storage 

NFSv4.1 Server 

layout 



  

H
 G

 k
 E

 

Parallel Declustered Object RAID 

 File attributes replicated on first two component objects 
 Components grow & new components created as data written 
 Component objects include file data and file parity 
 Declustered, randomized placement distributes RAID workload 

 Per-file RAID equation creates fine-grain work items for rebuilds 

C
 F

 E
 

20 OSD  

Storage  

Pool 

 

Mirrored 

or 9-OSD 

Parity 

Stripes 

Read about 

half of each 

surviving 

OSD 

 

Write a little 

to each OSD 

 

Scales up in 

larger 

Storage 

Pools 
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Panasas Scalable Rebuild 

RAID rebuild rate increases with storage pool size 
– Compare rebuild rates as the system size increases 

– Unit of growth is an 11-blade Panasas “shelf” 

• 4-u blade chassis with networking, dual power, and battery backup 

System automatically picks stripe width 
– 8 to 11 blade wide parity group 

• Wider stripes slower 

– Multiple parity groups 

• Large files 

Per-shelf rate scales 
– 10 MB/s (old hardware) 

• Reading at 70-90 MB/sec 

• Depends on stripe width 

– 30-50 MB/sec (current)  

• Reading at 250-400 MB/sec 
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0

20

40

60

80

100

120

140

0 2 4 6 8 10 12 14

# Shelves

One Volume, 1G Files

One Volume, 100MB Files

N Volumes, 1GB Files

N Volumes, 100MB Files

MB/sec Rebuild 

width=11 
width=8 

scheduling 

issue 

width=9 



RAID Summary 

RAID was invented for performance, but used for 

protection 

Block RAID is suffering from increased drive sizes 

Object RAID (or triplication) with parallel rebuild provides 

fast recovery 

Per-file RAID equations allow different 

performance/protection for different files, and isolate bad 

failures to individual files 

Declustering spreads RAID workload uniformly over 

large systems to reduce hot spots in parallel I/O 

environments 
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What is a file system and a 
parallel file system 
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File Systems Part 1 

 Local file system structures as a building block 

Network sharing, NAS vs. SAN 

Composing things via kernel VFS layer 

Compare different approaches 

– SAN FS 

– NFS 

– Object FS 
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Role of the File System 

Map logical file 

structure to 

physical storage 

devices 
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File Systems 

File systems have two key roles 

– Organizing and maintaining the file name space 

– Storing contents of files and their attributes 

Networked file systems must solve two new problems 

– File servers coordinate sharing of their data by many clients 

– Scale-out storage systems coordinate actions of many servers 

Parallel file systems (PFS) support parallel applications 

– A special kind of networked file system that provides high-

performance I/O when multiple clients share the file system 

– The ability to scale capacity and performance is an important 

characteristic of a parallel file system implementation 

67 



Local File Systems 

Persistent data structure 

maps from a user’s 

concept of a file to the 

data and attributes for 

that file. 

 

Early research and 

differentiation was all 

about optimizing access 

to a single device 

 

UFS, EXT4, ZFS, NTFS, 

XFS and BtrFS are local 

file systems 

Allocation 
map 

Indirect blocks 

Journal 

Data Data Data 

Inode 
Attributes 

Lock state 

Block pointers 

B-Tree 

Super 

Block 

68 



RAID 

Parallel File Systems 

coordinate many clients 

and many servers 

RAID and Volume 

Managers aggregate 

devices safely 

Scaling the File System 
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Disk 

Host 

Disk 
Disk 

Disk 
Disk 

Original POSIX 

environment was 

unshared, direct-

attached storage 

Client 
Client 

Client 
Client 

Client 

NAS/NFS introduces a 

Network (Ethernet) 

between clients and 

server 

Client 
Client 

Client 
Client 

Client 

Client 
Client 

Client 
Client 

Client 

Client 
Client 

Client 
Client 

Client 

Network 



SAN vs NAS 
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Network Attached 

Storage (NAS) 

Client 
Client 

Client 
Client 

Client 

Client 
Client 

Client 
Client 

Client 

Storage Area 

Network (SAN) 

Client 
Client 

Client 
Client 

Client 

Ethernet or Infiniband 

Fiber Channel, SAS, Ethernet, Infiniband 

RAID 



Distributed File System Functions 

Data virtualization  

– Striping or indirection to spread data among servers 

– Global namespace that spans all servers, visible to all clients 

Coordination (locking and synchronization) 

– Among clients sharing files 

– Among servers sharing physical devices 

Fault tolerance 

– For disk and server hard failures 

– For power failures 

– For software faults 

– For network faults 

– For client failures 
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Challenging Scenarios 

Concurrent creates/deletes within a shared directory 

– Who owns the lock? 

– Who updates the directory? 

– Who can read the directory? 

ls –l in large active directory 

– Who knows how big the files are, and their modify time? 

Concurrent read/writer to a shared file 

– Who knows how big the file is? 

– Is read-ahead or caching feasible? 

Concurrent writers to a shared file 

– Who knows how big the file is? 

 It is hard even when nothing goes wrong 
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SAN Shared Disk File Systems 
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SAN 

Metadata 

server 

cluster 

network 
SCSI 

Block 



RAID 

SAN FS Data Path 

Client Client Client 
App Write 

RAID IO 

Clients access RAID arrays over the SAN.   

Control protocol with metadata server coordinates access to 

shared disk via locking protocol 

Local file system data structures are exposed to the clients 

Metadata 
Server 

SCSI RPC 

Coordination 

•CXFS (SGI), Polyserve (HP), GFS 

(RedHat), MPFSi (EMC), Exanet (Dell), 

QFS (Sun), VMFS (Vmware) 

•IBM GPFS has the most scalable 

implementation 
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Network Attached Storage (NAS) 

75 

Local File 
System 

VFS API 

NFSd server 

NFS Client 

VFS API 

POSIX API 

In kernel API layering to support NFS 



Kernel VFS Layer 

Virtual File System kernel API 
– Invented in 1980’s when NFS came around 

– Handles multiple local file systems as well 

User Space Application 

POSIX API 

Generic Syscall Layer Network API nfsd 

tmpfs ext3 panfs 

VFS API 

fuse 

Network User App Disk RAM 
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Clustered NAS 

NAS 

Heads 
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Filer Pair 
RAID 

Filer Pair 
RAID 

Clustered NAS Data Path 

Client Client Client Client Client 

App Write 

Server Forward 

RAID IO 

NFS clients mount a particular Filer.  That filer will forward 

operations to the Filer that owns storage for the file. 

NFS 
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Isilon Server 

Isilon Data Path 

Isilon nodes compute parity and forward to others 

Client 

Client 

Client 

Client 

Client 

G
E

 N
e
tw

o
rk

 

IB
 N

e
tw

o
rk

 

Isilon Server 

Isilon Server 
• Application write 

• Server computes parity 

• Server forwards to others 

NFS 
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Parallel File Systems 

80 

An example parallel file system, with large astrophysics 

checkpoints distributed across multiple I/O servers (IOS)  

while small bioinformatics files are each stored on a single 

IOS 

C C C C C 

Comm. Network 

PFS PFS PFS PFS PFS 

IOS IOS IOS IOS 

H01 

/pfs 

/astro 

H03 /bio H06 

H02 
H05 

H04 

H01 

/astro 

/pfs 

/bio 

H02 

H03 

H04 

H05 H06 

chkpt32.nc 

prot04.seq prot17.seq 



Object Storage Architecture 

Block Based Device Object Based Device 

Source: Intel 

Operations 
 Create object 

   Delete object 

   Read object 

   Write object 

   Get Attribute 

   Set Attribute 

 

Addressing 
 [object, byte range] 

 

Allocation 
 Internal 

Operations 
 Read block 

   Write block 

 

 

Addressing 
  Block range 

 

Allocation 
 External 

 SAN file systems use Disk interfaces (SCSI) 

 NAS systems use File interfaces (VFS) 

 Object interface is like a file w/out a name (Inode) 
 iSCSI/OSD standard 
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Object-based Storage Clusters 

 Lustre, PanFS, Ceph, PVFS 

 File system layered over objects 

– Details of block management hidden 

by the object interface 

– Metadata server manages 

namespace, access control, and data 

striping over objects 

– Data transfer directly between OSDs 

and clients 

 High performance through clustering 

– Scalable to thousands of clients 

– 100+ GB/sec demonstrated to single 

filesystem 
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Lustre and GPFS Data Path 

RAID Controller 

Storage server Storage server 

RAID Controller 

Storage server Storage server 

Client Client Client Client Client 

App Write 

Server Buffer 

RAID IO 

Lustre clients stripe data across Object Storage Servers (OSS), 

which in turn write data through a RAID controller to Object Storage 

Targets (OST).  OST hides local file system data structures 

 

GPFS has different metadata model but a similar data path 

Control protocols to metadata servers are not shown 
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Panasas Parallel Data Path 

Data path by-passes RAID controllers and metadata servers 
– Control (RPC) path to metadata servers not shown here 

– Application writes data 

– DirectFlow/pNFS client layer generates redundant data for each stripe 

– Everything is written directly to storage 

– All blades work together on RAID rebuild 

Client Client Client Client Client Client 

Ethernet Network 

84 



The pNFS Standard 

The pNFS standard defines the NFSv4.1 protocol 

extensions between the server and client 

The I/O protocol between the client and storage is 

specified elsewhere, for example: 

– SCSI Block Commands (SBC) over Fibre Channel (FC) 

– SCSI Object-based Storage Device (OSD) over iSCSI 

– Network File System (NFS) 

The control protocol between the server and storage 

devices is also specified elsewhere, for example: 

– SCSI Object-based Storage Device (OSD) over iSCSI 
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pNFS Client 

Common client for different storage back ends 

Wider availability across operating systems 

Fewer support issues for storage vendors 
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Client Apps 

Layout 

Driver 

pNFS Client 

pNFS Server 

Cluster 

Filesystem 

1. SBC (blocks) 

2. OSD (objects) 

3. NFS (files) 

4. PVFS2 (files) 

5. Future backend… 

Layout 

metadata 

grant & revoke 

NFSv4.1 



Linux Release Cycle 2011-2012 

Kernel Merge Window  What’s New 

2.6.38 Jan 2011 More generic pNFS code, still disabled, not fully functional 

2.6.39 Apr 2011 Files-based back end, read, write, commit on the client.  

Linux server is read-only via pNFS. 

3.0 Jun 2011 Object-based back end (RAID-1 only) 

3.1 Sep 2011  Block-based back end 

3.2 Dec 2011 Object RAID Engine adds RAID-5 

3.3 Feb 2012 Bug Fixes 

3.4 Apr 2012 iSCSI/OSD auto login 

3.5 July 2012 Bug Fixes 

RHEL 6 and SLES 11 based on 2.6.32 
– Backporting pNFS is in progress 

RHEL 7 and SLES 12 based on 3.* 
– Integrated pNFS of all flavors – timeline 2013 
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Parallel File Systems 
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I/O for Computational Science 

Additional I/O software provides improved performance and 
usability over directly accessing the parallel file system. Reduces 
or (ideally) eliminates need for optimization in application codes. 
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Goals for this section 

 Introduce Lustre, GPFS, Panasas, HDFS 

Compare different approaches to metadata 

– Block Management 

– File Create 

Coordination protocols for correctness 

– Caching 

– Locking 

Fault tolerance protocols for reliability 
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Production Parallel File Systems 

GPFS, Lustre, Panasas support super computers 
– Cielo, Hopper, MIRA 

HDFS (Google FS) support map reduce (Hadoop) 
Approaches to metadata vary 
Approaches to fault tolerance vary 
Emphasis on features, “turn-key” deployment, vary 
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GPFS 



IBM GPFS 
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SAN storage 

I/O 
Servers 

NSD 
Clients 

General Parallel File System 

 Lots of configuration flexibility 

– AIX, SP3, Linux 

– Direct storage, Virtual Shared Disk,  

Network Shared Disk 

– Clustered NFS re-export 

Block interface to storage nodes 

Distributed locking 

Blue Gene systems use GPFS 



Blue Gene/Q Parallel Storage System 
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Panasas ActiveScale (PanFS) 

94 

Complete “appliance” solution (HW + SW), blade form factor 
– DirectorBlade = metadata server 

– StorageBlade = OSD 

Coarse grained metadata 

clustering 

 Linux native client for 

parallel I/O 

NFS & CIFS re-export 

 Integrated battery/UPS 

 Integrated 10GE switch 

Global namespace 
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iSCSI/OSD 

OSDFS 

Storage 

Blade 

1000+ 

SysMgr 

PanFS 

NFS/CIFS 

Client 

DirectorBlade 

100+ 

Client 

Compute Nodes 

RPC 

10,000+ 



PanFS at LANL 
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1 Director, 10 OSD each chassis 

104 chassis in largest 

single system, divided 

over 12 subnets (lanes) 

10 GE 

10 GE 

10 GE 

PaScalBB 

12 switches 

RoadRunner 

TLCC 

Cielo 

… 

IO Nodes in each compute 

cluster  route between 

HSN and 10GE 



Lustre 

 Open source object-based parallel 
file system 

– Based on CMU NASD architecture 

– Lots of file system ideas from Coda 
and InterMezzo 

– ClusterFS acquired by Sun, 9/2007 

– Sun acquired by Oracle 4/2009 

– Whamcloud aquired by Intel, 2012 

 Originally Linux-based; Sun ported 
to Solaris 

 Asymmetric design with separate 
metadata server 

 Proprietary RPC network protocol 
between client & MDS/OSS 

 Distributed locking with client-driven 
lock recovery 
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MDS 2 

(standby) 

Lustre Object Storage 

Servers (OSS, 100’s) 

Metadata 

Servers 

Failover 

MDS 1 

(active) 

Commodity 

SAN or disks 

Enterprise class 

Raid storage 

Failover 

QSW Elan 

Myrinet 

IB 

GigE 

OSS1 

OSS2 

OSS3 

OSS4 

OSS5 

OSS6 

OSS7 

Multiple storage 

networks are supported 

Lustre material from www.lustre.org and various talks 

http://www.lustre.org/


Lustre file system on Hopper 
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Note: SCRATCH1 and SCRATCH2 have identical configurations. 



Hadoop Environment 
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Compute 

Data 

Compute 

Data 

Compute 

Data 

Compute 

Data 

Compute 

Data 

Compute 

Data 

Compute 

Data 

Compute 

Data 

Data Node, Job Node in one box: lots of memory, local disks, ok network 

Job is run on node with copy of its data- sometimes 

Dedicated boxes host critical infrastructure services: 

Name Node (memory limited), Job Scheduler, Zookeeper 

Network infrastructure often oversubscribed 

Low cost hardware, run until failure, offline service 



HDFS and Google FS 

Data Object is a 64 MB chunk of a file 
– Replicated 3 times on different data nodes 

Single Name Node keeps all metadata in main memory 

Non-POSIX semantics 
– Access via programming library 

Exposes location information to Map-Reduce applications 
– Map ships function to nodes with data; runs function on local data 

– Reduce collects results of Map phase and generates answer 

Hadoop is open source implementation 
– Google has its own proprietary implementations 

– Hadoop job scheduler, HDFS file system, Zookeeper configuration 
management, Cassandra bigtables, many more 
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Comparing Parallel File Systems 

Block Management 

How Metadata is stored 

What is cached, and where 

Fault tolerance mechanisms 

Management/Administration 
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Performance 

Reliability 

Manageability 

Cost 

Designer cares about                                                 Customer cares about 



Block Management 

Delegate block management to “object server” 
– Panasas, Lustre, PVFS, HDFS 

– I/O server uses local file system to store a chunk of a file 

• Panasas OSDFS, Lustre ext4, PVFS (any), HDFS (any) 

Distribute block management via locking 
– GPFS, GFS2 

– Nodes have their own part of the block map 

 

There are lots of blocks to manage 
– 8 billion 512B sectors on a 4T disk 

– 40 million 4K pages on a 40G SSD 
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Data Distribution in Parallel File Systems 
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Locking in Parallel File Systems 

Most parallel file systems use locks to manage concurrent 
access to files 

 Files are broken up into lock units 

 Clients obtain locks on units that they will access before 
I/O occurs 

 Enables caching on clients as well (as long as client has a 
lock, it knows its cached data is valid) 

 Locks are reclaimed from clients when others desire 
access  
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If an access touches any 

data in a lock unit, the 

lock for that region must 

be obtained before access 

occurs. 



Locking and Concurrent Access 
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Delegating locks 

File systems can delegate locking responsibilities to file 

system clients 

– Even CIFS does it for unshared file access (oplocks) 

Replaces large grain file system lock units (e.g., many 

blocks) with external (e.g., MPI-based) application 

synchronization 

– Application agrees not to write the same byte from different 

processes 

– Explicit barriers that flush data to storage and re-sync any 

caches with storage 
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Meta Data 

Metadata names files and describes where they are 

located in the distributed system 

– Inodes hold attributes and point to data blocks 

– Directories map names to inodes 

Metadata updates can create performance problems 

Different approaches to metadata are illustrated via the  

File Create operation 
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File: /home/sue/proj/moon.data 

Metadata 

Physical location of data 



File Create on Local File System 

 3 logical I/Os 
– Journal update 

– Directory insert 

– Inode update 

Performance determined by journal updates 
– Or lack there of 

– Details vary among systems 
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Fast Journal 

device (SSD) 

Dir 

Inode 

Inode Name 

0017 Fred 

2981 Yoshi 

7288 Racheta 



File Create on NFS Server 

RPC 
– Client to NFS server RPC 

NVRAM update 
– Mirrored copy on peer via RDMA 

Reply to client 

 Local I/O 
– Done in the background 

Performance from 
– NVRAM+RDMA 
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File Create on SAN FS 

 Lock RPC for inode allocation 

 Lock RPC for directory insert 

 Journal update 

SAN I/O for inode and directory 
– Done in the background 

Performance dependent on 
– Journal updates 

– Lock manager updates 

– GPFS caches lock ownership 

– SAN I/O 
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Lock RPC 

RAID 



File Create on Lustre 

Client to Server RPC 

Server creates local file to store metadata 
– Journal update, local disk I/O 

Server creates container object(s) 
– Object create transaction with OSS 

– OSS creates local file for object 

Performance dependent on 
– Local file systems on metadata 

server and OSS/OST (modified ext3) 
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OST OST 

OSS OSS 

OST 

OSS 
MDS 

Create File 

Create 

Object 

Shadow 

File System 



File Create on PanFS 

Client to Server RPC 

MDS updates journal in NVRAM (locally and on backup) 

MDS creates 2 container objects (iSCSI/OSD Create Object) 
– OSDFS journals object create in NVRAM 

– MDS annotates objects with its own metadata (as attributes) 

Reply to client 

Update directory (mirrored OSD write) in background 

Performance dependent on 
– Journal update to backup 

– OSD Create object 
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OSD OSD OSD 
PanFS 

Create File 

Create 

Objects 

NVRAM 
Journal To backup 

Data and 

Metadata 

in Objects 



File Create on HDFS 

RPC to Name Node 

 Journal update 

Container Create 
– One on the client node 

– One replica “in rack” 

– One more replica “out of rack” 

Performance depends on 
– Metadata memory size 

– Local file system updates on Data Nodes 
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Caches 
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Dir 

Inode 

Data 

File 

File Server 

DRAM words cached on-chip in L1/L2 cache 

Local disk block cached in main memory 

Network remote data block cached in memory 

Network remote data block cached on local disk 

Spinning disk data block cached on SSD 

Data object attributes cached by metadata service 

File attributes cached by file system client 
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Caching 

 In data server memory, in front of disk 

– All systems do this for “clean” read data 

– Delayed writes need battery protected memory 

• RAID Controller, with mirroring 

• Panasas StorageBlades, with integrated UPS 

 In file system client, in front of network 

– Need cache consistency protocol 

– GPFS, DLM lock ownership protocol on blocks 

– Lustre, some caching with DLM protocol 

– Panasas, exclusive, read-only, read-write, concurrent write 

caching modes with callback protocol 

– PVFS, read-only client caching 

– HDFS, read-only caching of immutable objects 
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Fault Tolerance 

Combination of hardware and software ensures continued 

operation in face of failures 

Disk Failures 

–Block RAID 

–Object RAID or Triplication 

Service Failure (software crash) 

–Local journal 

–Heartbeat protocols 

Server Failures (hardware crash) 

– Shared disk file system 

–Journal replication to backup buddy 

Client Failures 

–Fencing (SAN zoning, Object Capabilities) 

–GPFS clients members of global quorum 
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Journals 

A Journal records what the system is going to do 

– Record is made before file system is modified 

– Protects local disk operations and remote objects operations 

System consults journal after a crash 

– Cleans up the file system w/out expensive sweep 

– Critical for correctness in the face of faults in the system 

Physical device for journal dictates performance 

– No journal: fastest, but you have dirty crashes 

– NVRAM replicated to backup 

– 15K RPM disk 

– RAID controller with battery-backed cache 

– SSD 
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Design Comparison 

GPFS HDFS Panasas Lustre 

Block mgmt Shared 

block map 

Object based Object based Object based 

Metadata 

location 

FS Disk 

Structures 

Name Node Object 

Attributes 

Shadow File 

System 

Metadata 

written by 

Client Server Client, server Server 

Cache 

coherency & 

protocol 

Coherent;  

distributed 

locking 

Cache 

immutable/RO 

data only 

Coherent; 

callbacks 

Coherent; 

distributed 

locking 

Reliability Block RAID Triplication Object RAID Block RAID 
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Other Issues 

What about… 
– Monitoring & troubleshooting? 

– Backups? 

– Snapshots? 

– Disaster recovery & replication? 

– Capacity management? 

– System expansion? 

– Retiring old equipment? 

– Limitations of POSIX 
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Other File Systems 

Ceph (UCSC) 
– OSD-based parallel filesystem 

– Dynamic metadata partitioning between MDSs 

– OSD-directed replication based on CRUSH distribution function 
(no explicit storage map) 

GlusterFS (Gluster) 
– cloud storage 

Fraunhofer (FhGFS) 
– parallel file system 

VMFS (Vmware) 
– SAN FS optimized for storing VM images 

Clustered NAS 
– NetApp GX, Isilon, BlueArc, etc. 

PVFS – OrangeFS 
– User Space Parallel File System optimized for HPC 
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Workloads and 
User Wish list 
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Why you might need to do I/O 

Checkpoint/Restart files  

– System or node could fail; protect your application so you don’t 

have to start from the beginning 

– Need to run longer than wall clock time allows 

Analysis files 

Visualization files 

Out-of-core algorithms 
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Why is Scientific I/O so difficult? 

• Scientists think about 

data in terms of their 

science problem: 

molecules, atoms, 

grid cells, particles  

• Ultimately, physical 

disks store bytes of 

data  

• Layers in between, the 

application and 

physical disks are at 

various levels of 

sophistication   
Images from David Randall, Paola Cessi, John Bell, T Scheibe 
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Serial I/O  

0 1 2 3 4 

File 

processors 

• Each processor sends its data to the 
master who then writes the data to a 
file 

5 

• Advantages 

• Simple 

• May perform ok for very small IO sizes 

• Disadvantages 

• Not scalable 

• Not efficient, slow for any large number 
of processors or data sizes 

•  May not be possible if memory 
constrained 
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Parallel I/O Multi-file  

0 1 2 3 4 

File File File File File 

processors 

•Advantages 
• Simple to program 

• Can be fast -- (up to a point) 

•Disadvantages 

• Can quickly accumulate many files 

• Hard to manage 

• Requires post processing 

• Difficult for storage systems, HPSS, to handle many small files 

• Can overwhelm the file system with many writers 

 

5 

File 

•Each processor writes its own data to a separate file 
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Flash Center IO Nightmare… 

• Large 32,000 processor run on LLNL BG/L 

• Parallel IO libraries not yet available 

• Intensive I/O application 

– checkpoint files .7 TB, dumped every 4 hours, 200 dumps 

• used for restarting the run 

• full resolution snapshots of entire grid 

– plotfiles - 20GB each, 700 dumps 

• coarsened by a factor of two averaging 

• single precision 

• subset of grid variables 

– particle files 1400 particle files 470MB each 

• 154 TB of disk capacity 

• 74 million files! 

• Unix tool problems 

• Took 2 years to sift though data, sew files together 
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Parallel I/O Single-file  

0 1 2 3 4 

File 

processors 

•Advantages 

• Single file 

• Manageable data 

•Disadvantages 

• Shared files may not perform as well as one-file-per-processor 
models 

5 

•Each processor writes its own data to the same file using MPI-IO 
mapping 
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Access Patterns 

Memory 

File 

Contiguous 

Memory 

File 

Contiguous in 

memory, not in file 

Memory 

File 

Contiguous in file, 

not in memory 

Memory 

File 

Dis-contiguous  

Mem 

File 

Bursty 
T

im
e
 

Memory 

File 

Out-of-Core 
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Parallel I/O:  
A User Perspective 

Wish List 

– Write data from multiple processors into a single file 

– File can be read in the same manner regardless of the 

number of CPUs that read from or write to the file. (eg. 

want to see the logical data layout… not the physical 

layout) 

– Do so with the same performance as writing one-file-per-

processor 

– And make all of the above portable from one machine to 

the next 

Inconvenient Truth: Scientists need to understand 

about I/O in order to get good performance  
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Benchmarking 
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Goals for this section 

 Introduce different kinds of I/O workloads 

Rules of thumb about performance 

 Introduction to some standard benchmarks 
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Performance Basics 

I/O Patterns 

– Streaming (i.e., sequential) 

• Start to finish 

– Strided 

• 4, 8, 12, 16, … 

– Random 

• 97, 32, 5, 1354, 1464, 765, … 

Sharing Patterns 

– File-per-process 

– Shared-file 

Metadata Operations 

– File Create 

– File Delete 

– Set Attributes 

– Get Attributes 

– Directory lookups 

– Directory tree walks 

– File updates (i.e., writes) 

What do you mean by “I/O”, by “Meta Data ops”? 
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Workloads 

Streaming I/O 

– Single client, one or more 

streams per client 

– Scaling clients 

– System throughput, scaling 

with system size (or not) 

Random I/O 

– Dependent on caching and 

drive seek performance 

Metadata 

– Create/Delete workloads 

– File tree walk (scans) 

MPI IO 

– Coordinated opens 

– Shared output files 

Interprocess Communication 

– Producer/consumer files 

– Message drop 

– Atomic record updates 

Small I/O 

– Small whole file operations 

– Small read/write operations 
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Performance Features 

Streaming I/O 

– Read-ahead 

– Write buffering 

• is there a battery? 

Random I/O 

– Large data cache 

– SSD 

Metadata 

– Asynchronous file delete 

– Stat pre-fetching to optimize 

tree-walk 

– NVRAM  journal updates 

MPI IO 

– FS-specific Hints 

Interprocess Communication 

– Please use MPI 

Small I/O 

– Aggressive metadata cache 

– Large data cache 

– SSD 
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Benchmarking Pitfalls 

Not measuring what you think you are measuring 
– Most common with microbenchmarks 

– For example, measuring write or read from cache rather than to storage 

– Watch for “faster than the speed of light” results 

Multi-client benchmarks without synchronization across nodes 
– Measure aggregate throughput only when all nodes are transferring data 

– Application with I/O barrier may care more about when last node finishes 
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Node 1 

Node 2 

Node 3 

Node 1 

Node 2 

Node 3 

 Benchmark that does not model application workload 

– Different I/O size & pattern, different file size, etc. 



Analyzing Results 

Sanity-checking results: what is the “speed of light” 

 Large sequential accesses 
– Readahead can hide latency 

– 7200 RPM SATA   60-100 MB/sec/spindle 

– 15000 RPM FC 100-170 MB/sec/spindle 

– SAS SSD              100-400 MB/sec/device 

– SSD (PCIe)               1+      GB/sec/slot 

Small random access 
– Seek + rotate limited 

– Readahead rarely helps (and sometimes hurts) 

– 7200 RPM SATA avg access 15 ms,   75-100 ops/sec/spindle 

– 15000 RPM FC avg access   6 ms, 150-300 ops/sec/spindle 

– SSD (Sata)           avg access <.1ms, 20K-50K ops/sec/device 

– SSD (PCIe)          avg access   X us,  785K ops/sec 
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Rule of Thumb 1 

Bigger is better 

– Large files, large transfers, large numbers of clients generally 

result in larger aggregate performance 

But bigger isn’t always necessary 

– 64K may be just as good as 4MB if read ahead is working 

– Write buffering for less-than full stripe writes may or may 

not hurt depending on the quality of the RAID controller 
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Rule of Thumb 2 

Alignment of data access can be critical 

– Sub-block, non-aligned accesses require pre-fetching and 

buffering, at the minimum 

– Additional locking overhead between threads can add further 

overhead 

Middleware can help 

– MPI mechanisms shuffle data among data collectors and go to 

the file system in large, aligned chunks 
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Rule of Thumb 3 

Sharing has a cost 

– Sharing between clients requires coordination by the file system, 

and therefore has a cost 

– E.g., 1024 different clients creating a file in the same directory 

Sharing is important 

– Some systems work hard to make sharing “perfect” so that 

clients anywhere in the network have an up-to-date view of files 

and their data 

– NFS caching semantics cause tiny delays in visibility of new files 

in a directory 

Corollary 

– A dedicated “one host, one wire, one disk” local file system can 

be optimized in ways that are too expensive for shared network 

storage systems to match 
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Rule of Thumb 4 

Use MPI for Message Passing 

– Some applications use the file system as a convenient 

interprocess communication mechanism 

• They should use a real message passing infrastructure instead 

– This works OK at small scale with a single NFS filer, but has 

horrible scaling properties because it involves the metadata 

server in every message exchange 

MPI IO has plenty of legitimate uses 

– Coordinated I/O by many processes in one application 
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Rule of Thumb 5 

Measure the Application 
– Measuring your own application performance is the best test 

– Different systems have different optimizations/bottlenecks 

Corollary 
– Parallel systems are excellent at finding serialization 

Examples 
– Single inode lock on directory limits create rate 

– Small I/O may create multi-cycle RAID I/O 
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IOR: File System Bandwidth 

Written at Lawrence Livermore National Laboratory 

Named for the acronym ‘interleaved or random’ 

POSIX, MPI-IO, HDF5, and Parallel-NetCDF APIs 

– Shared or independent file access 

– Collective or independent I/O (when available) 

Employs MPI for process synchronization 

Used to obtain peak POSIX I/O rates for shared and 

separate files 

– Single Shared Output File: 

./IOR -a POSIX -C -i 3 -t 4M -b 4G -e -v -v -o $FILE 

– One File per Process (-F option) 

./IOR -a POSIX -C -i 3 -t 4M -b 4G -e -v -v -F -o $FILE 
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IOR Access Patterns for Shared Files 

 Primary distinction between the two major shared-file patterns is 

whether each task’s data is contiguous or noncontiguous 

 For the segmented pattern, each task stores its blocks of data in a 

contiguous region in the file 

 With the strided access pattern, each task’s data blocks are spread 

out through a file and are noncontiguous 
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Segmented File 

Strided File 



GPFS Access three ways 

 POSIX shared vs MPI-IO collective 
– Locking overhead in this un-aligned workload hits POSIX 

– Communication (two-phase i/o optimization) hits MPI-IO 

 Despite data management costs, file per process (fpp) 
extremely seductive 

 IOR the beginning, not end, of journey towards understanding 
performance 
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Metadata Performance 

Storage is more than reading & writing 

Metadata operations change the namespace or file attributes 

– Creating, opening, closing, and removing files 

– Creating, traversing, and removing directories 

– “Stat”ing files (obtaining the attributes of the file, such as permissions 

and file size) 

Several use cases exercise metadata subsystems: 

– Interactive use (e.g. “ls -l”) 

– File-per-process POSIX workloads 

– Collectively accessing files through MPI-IO (directly or indirectly) 
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mdtest: Parallel Metadata Performance 

 Measures performance of multiple tasks creating, stating, and 
deleting both files and directories in either a shared directory or 
unique (per task) directories 

 Demonstrates potential serialization of multiple, uncoordinated 
processes for directory access 

 Written at Lawrence Livermore National Laboratory 

 MPI code, processes synchronize for timing purposes 

 Three variations: 

– Each task creates 100 files in a unique subdirectory (-u option) 

mdtest -d $DIR -n 100 -i 3 -N 1 -v -u 

– One task creates 6400 files in one directory (-c option) 

– Each task opens, removes its own 

mdtest -d $DIR -n 100 -i 3 -N 1 -v -c 

– Each task creates 100 files in a single shared directory 

mdtest -d $DIR -n 100 -i 3 -N 1 -v 
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mdtest Variations 
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Single Process (-c) 

1) Process A creates 

files for all 

processes in root 

directory. 

2) Processes A, B, 

and C open, stat, 

and close their own 

files. 

3) Process A removes 

files for all 

processes. 



Performance Disclaimer 

The following relative results are shown to illustrate that 

different systems have different performance trade-offs 

The data is a few years old from a set of very different 

systems, so only self-relative results are shown 

Software updates and differences in hardware 

configurations will potentially make big differences 

 

=> You should run tests on your own platform 
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mdtest: Stat File 
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POSIX I/O 

(It stinks but everybody uses it) 
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POSIX I/O 

POSIX is the IEEE Portable Operating System Interface 

for Computing Environments 

 “POSIX defines a standard way for an application 

program to obtain basic services from the operating 

system” 

– Mechanism almost all serial applications use to perform I/O 

POSIX was created when a single computer owned its 

own file system 
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What’s wrong with POSIX? 

 It’s a useful, ubiquitous interface for basic I/O 

 It lacks constructs useful for parallel I/O 

– Cluster application is really one program running on N nodes, 

but looks like N programs to the filesystem 

– No support for noncontiguous I/O 

– No hinting/prefetching 

 Its rules hurt performance for parallel apps 

– Atomic writes, read-after-write consistency 

– Attribute freshness 

 

POSIX should not have to be used (directly) in parallel 

applications that want good performance 

– But developers use it anyway 
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Deficiencies in serial interfaces 

Typical (serial) I/O calls seen in applications 

No notion of other processors 

Primitive (if any) data description methods 

Tuning limited to open flags 

No mechanism for data portability 

– Fortran not even portable between compilers 
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POSIX: 

 
fd = open(“some_file”, O_WRONLY|O_CREAT, 
  S_IRUSR|S_IWUSR); 
ret = write(fd, w_data, nbytes); 
ret = lseek(fd, 0, SEEK_SET); 
ret = read(fd, r_data, nbytes); 
ret = close(fd); 

FORTRAN: 

 
OPEN(10, FILE=‘some_file’,  & 
    STATUS=“replace”, & 
    ACCESS=“direct”, RECL=16); 
WRITE(10, REC=2) 15324 
CLOSE(10); 



The MPI-IO Interface 
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I/O for Computational Science 

Additional I/O software provides improved performance and 
usability over directly accessing the parallel file system. Reduces 
or (ideally) eliminates need for optimization in application codes. 
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MPI-IO 

 I/O interface specification for use in MPI apps 

Data model is same as POSIX 

– Stream of bytes in a file 

Features: 

– Collective I/O 

– Noncontiguous I/O with MPI datatypes and file views 

– Nonblocking I/O 

– Fortran bindings (and additional languages) 

– System for encoding files in a portable format (external32) 

• Not self-describing - just a well-defined encoding of types 

 

 Implementations available on most platforms (more later) 

157 



Simple MPI-IO 

Collective open: all processes in communicator  

File-side data layout with file views 

Memory-side data layout with MPI datatype passed to write 
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MPI_File_open(COMM, name, mode, 
 info, fh); 
MPI_File_set_view(fh, disp, etype,  
 filetype, datarep, info); 
MPI_File_write_all(fh, buf, count,  
 datatype, status);  

MPI_File_open(COMM, name, mode, 
 info, fh); 
MPI_File_set_view(fh, disp, etype,  
 filetype, datarep, info); 
MPI_File_write_all(fh, buf, count,  
 datatype, status);  



Independent and Collective I/O 

 Independent I/O operations specify only what a single process will do 

– Independent I/O calls do not pass on relationships between I/O on other processes  

 Many applications have phases of computation and I/O 

– During I/O phases, all processes read/write data 

– We can say they are collectively accessing storage 

 Collective I/O is coordinated access to storage by a group of processes 

– Collective I/O functions are called by all processes participating in I/O 

– Allows I/O layers to know more about access as a whole, more opportunities for 
optimization in lower software layers, better performance 
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Contiguous and Noncontiguous I/O 

 Contiguous I/O moves data from a single memory block into a single file region 

 Noncontiguous I/O has three forms: 

– Noncontiguous in memory, noncontiguous in file, or noncontiguous in both 

 Structured data leads naturally to noncontiguous I/O (e.g. block decomposition) 

 Describing noncontiguous accesses with a single operation passes more knowledge 
to I/O system 
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in File 

Noncontiguous 

in Memory 
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… 
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Extracting variables from a block and 

skipping ghost cells will result in 

noncontiguous I/O. 



Data Sieving Optimization 

 One large request better than several smaller operations 
 Data sieving for writes is more complicated than for reads 

– Must read the entire region first (1) 
– Then make changes in buffer (2) 
– Then write the block back (3) 

 Requires locking in the file system 
– Can result in false sharing (interleaved access) 

 PFS supporting noncontiguous writes is preferred 
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Collective I/O and Two-Phase I/O 

 Problems with independent, noncontiguous access 

– Lots of small accesses 

– Independent data sieving reads lots of extra data, can exhibit false sharing 

 Idea: Reorganize access to match layout on disks 

– Single processes use data sieving to get data for many 

– Often reduces total I/O through sharing of common blocks 

 Second “phase” redistributes data to final destinations 

 Two-phase writes operate in reverse (redistribute then I/O) 

– Typically read/modify/write (like data sieving) 

– Overhead is lower than independent access because there is little or no false sharing 

 Note that two-phase is usually applied to file regions, not to actual blocks 
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Two-Phase Read Algorithm 

p0 p1 p2 p0 p1 p2 p0 p1 p2 

Phase 1: I/O Initial State Phase 2: Redistribution 



Two-Phase I/O Algorithms 
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For more information, see W.K. Liao and A. Choudhary, “Dynamically Adapting File Domain Partitioning Methods for Collective I/O Based on 

Underlying Parallel File System Locking Protocols,” SC2008, November, 2008. 



S3D Turbulent Combustion Code 

 S3D is a turbulent combustion 

application using a direct numerical 

simulation solver from Sandia 

National Laboratory 

 Checkpoints consist of four global 

arrays 

– 2 3-dimensional 

– 2 4-dimensional 

– 50x50x50 fixed 

subarrays 

 

Thanks to Jackie Chen (SNL), Ray Grout 

(SNL), and Wei-Keng Liao (NWU) for 

providing the S3D I/O benchmark, Wei-

Keng Liao for providing this diagram, C. 

Wang, H. Yu, and K.-L. Ma of UC Davis for 

image. 
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Impact of Optimizations on S3D I/O 

 Testing with PnetCDF output to single file, three configurations,  
16 processes 

– All MPI-IO optimizations (collective buffering and data sieving) disabled 

– Independent I/O optimization (data sieving) enabled 

– Collective I/O optimization (collective buffering, a.k.a. two-phase I/O) enabled 
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Coll. Buffering  

and Data Sieving 

Disabled 

Data Sieving 

Enabled 

Coll. Buffering 

Enabled (incl. 

Aggregation) 

POSIX writes 102,401 81 5 

POSIX reads 0 80 0 

MPI-IO writes 64 64 64 

Unaligned in file 102,399 80 4 

Total written (MB) 6.25 87.11 6.25 

Runtime (sec) 1443 11 6.0 

Avg. MPI-IO time 

per proc (sec) 

1426.47 4.82 0.60 



Example: Visualization Staging 

 Large frames must be preprocessed before display on a tiled display 

 First step in process is extracting “tiles” that will go to each projector 

– Perform scaling, etc. 

 Parallel I/O can be used to speed up reading of tiles 

– One process reads each tile 

 We’re assuming a raw RGB format with a fixed-length header 
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MPI Subarray Datatype 

 MPI_Type_create_subarray can describe any N-dimensional subarray 

of an N-dimensional array 

 In this case we use it to pull out a 2-D tile 

 Tiles can overlap if we need them to 

 Separate MPI_File_set_view call uses this type to select the file region 
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Opening the File, Defining RGB Type 

MPI_Datatype rgb, filetype; 

MPI_File filehandle;   

ret = MPI_Comm_rank(MPI_COMM_WORLD, &myrank); 

 

/* collectively open frame file */ 

ret = MPI_File_open(MPI_COMM_WORLD, filename, 
MPI_MODE_RDONLY, MPI_INFO_NULL, &filehandle); 

 

/* first define a simple, three-byte RGB type */ 

ret = MPI_Type_contiguous(3, MPI_BYTE, &rgb); 

ret = MPI_Type_commit(&rgb); 

/* continued on next slide */ 
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Defining Tile Type Using Subarray 

/* in C order, last array 

 * value (X) changes most 

 * quickly 

 */ 

frame_size[1] = 3*1024; 

frame_size[0] = 2*768; 

tile_size[1] = 1024; 

tile_size[0] = 768; 

tile_start[1] = 1024 * (myrank % 3); 

tile_start[0] = (myrank < 3) ? 0 : 768; 

ret = MPI_Type_create_subarray(2, frame_size, 
tile_size, tile_start, MPI_ORDER_C, rgb, 
&filetype); 

ret = MPI_Type_commit(&filetype); 
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Reading Noncontiguous Data 

/* set file view, skipping header */ 

ret = MPI_File_set_view(filehandle, 
file_header_size, rgb, filetype, "native", 
MPI_INFO_NULL); 

/* collectively read data */ 

ret = MPI_File_read_all(filehandle, buffer, 
tile_size[0] * tile_size[1], rgb, &status); 

ret = MPI_File_close(&filehandle); 
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 MPI_File_set_view is the MPI-IO mechanism for describing 

noncontiguous regions in a file 

 In this case we use it to skip a header and read a subarray 

 Using file views, rather than reading each individual piece, gives the 

implementation more information to work with (more later) 

 Likewise, using a collective I/O call (MPI_File_read_all) provides 

additional information for optimization purposes (more later) 



Under the Covers of MPI-IO 

MPI-IO implementation given a lot of information in this 

example: 

– Collection of processes reading data 

– Structured description of the regions 

 Implementation has some options for how to perform the 

data reads 

– Noncontiguous data access optimizations 

– Collective I/O optimizations 
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MPI-IO Implementations 

 Different MPI-IO implementations exist 

 Three better-known ones are: 

– ROMIO from Argonne National Laboratory 

• Leverages MPI-1 communication 

• Supports local file systems, network file systems, 
parallel file systems 

– UFS module works GPFS, Lustre, and others 

• Includes data sieving and two-phase optimizations 

– MPI-IO/GPFS from IBM (for AIX only) 

• Includes two special optimizations 

– Data shipping -- mechanism for coordinating access to a file to 
alleviate lock contention (type of aggregation) 

– Controlled prefetching -- using MPI file views and access patterns 
to predict regions to be accessed in future 

– MPI from NEC 

• For NEC SX platform and PC clusters with Myrinet, Quadrics, IB, or 
TCP/IP 

• Includes listless I/O optimization -- fast handling of noncontiguous I/O 
accesses in MPI layer 
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Common Functionality 

ADIO Interface 

UFS 

MPI-IO Interface 

NFS XFS PVFS 
ROMIO’s layered architecture. 



MPI-IO Wrap-Up 

MPI-IO provides a rich interface allowing us to describe 

– Noncontiguous accesses in memory, file, or both 

– Collective I/O 

This allows implementations to perform many 

transformations that result in better I/O performance 

 Ideal location in software stack for file system specific 

quirks or optimizations 

Also forms solid basis for high-level I/O libraries 

– But they must take advantage of these features! 
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I/O Forwarding 
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I/O for Computational Science 

Additional I/O software provides improved performance and 
usability over directly accessing the parallel file system. Reduces 
or (ideally) eliminates need for optimization in application codes. 
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I/O Forwarding 
Software 

Gateway nodesCompute nodes

I/ O forwarding software runs on 

compute and gateway nodes and 

bridges between the compute nodes 

and external storage.

run I/O forwarding software 
intercepting I/O calls from 
application and forwarding to 
gateway nodes

run I/O forwarding software 
accepting  I/O requests from 
compute nodes and forward 
to parallel file system
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Cray’s Data Virtualization Service (DVS)  

 A distributed network service that allows other file 

systems besides Lustre (GPFS, Panasas, NFS) to be 

used on the XT/XE systems 

 DVS servers forward data to the underlying file system 

and forward results back to DVS client  

 Light-weight DVS client installed on compute nodes 

 Also used to enable shared library applications on 

Hopper 
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Panasas and DVS at LANL 
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for file objects on the 
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I/O Architectures: Similarities 

 Compute nodes with indirect access to storage 

 I/O nodes that form a bridge to the storage 
system 
– Lnet, DVS, ciod 

 External network fabric connecting HPC system 
to storage 

 Collection of storage servers and enterprise 
storage hardware providing reliable, persistent 
storage 
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I/O architectures at large scale have 
converged to a common model. 
 



The Parallel netCDF 
Interface and File Format 
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Thanks to Wei-Keng Liao, Alok 

Choudhary, and Kui Gao (NWU) for 

their help in the development of 

PnetCDF. 



I/O for Computational Science 

Additional I/O software provides improved performance and 
usability over directly accessing the parallel file system. Reduces 
or (ideally) eliminates need for optimization in application codes. 
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Higher Level I/O Interfaces 

Provide structure to files 

– Well-defined, portable formats 

– Self-describing 

– Organization of data in file 

– Interfaces for discovering contents 

Present APIs more appropriate for computational science 

– Typed data 

– Noncontiguous regions in memory and file 

– Multidimensional arrays and I/O on subsets of these arrays 

Both of our example interfaces are implemented on top of 

MPI-IO 
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Parallel NetCDF (PnetCDF) 

 Based on original “Network Common Data Format” (netCDF) work 
from Unidata 

– Derived from their source code 

 Data Model: 

– Collection of variables in single file 

– Typed, multidimensional array variables 

– Attributes on file and variables 

 Features: 

– C, Fortran, and F90 interfaces 

– Portable data format (identical to netCDF) 

– Noncontiguous I/O in memory using MPI datatypes 

– Noncontiguous I/O in file using sub-arrays 

– Collective I/O 

– Non-blocking I/O 

 Unrelated to netCDF-4 work 

 Parallel-NetCDF tutorial: 

– http://trac.mcs.anl.gov/projects/parallel-netcdf/wiki/QuickTutorial 
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Data Layout in netCDF Files 
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Record Variables in netCDF 

Record variables are defined to have 

a single “unlimited” dimension 

– Convenient when a dimension size is 

unknown at time of variable creation 

Record variables are stored after all 

the other variables in an interleaved 

format 

– Using more than one in a file is likely to 

result in poor performance due to number 

of noncontiguous accesses 
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Storing Data in PnetCDF 

Create a dataset (file) 

– Puts dataset in define mode 

– Allows us to describe the contents 

• Define dimensions for variables 

• Define variables using dimensions 

• Store attributes if desired (for variable or dataset) 

Switch from define mode to data mode to write variables 

Store variable data 

Close the dataset 

187 



Example: FLASH Astrophysics 

 FLASH is an astrophysics code for 

studying events such as 

supernovae 

– Adaptive-mesh hydrodynamics 

– Scales to 1000s of processors 

– MPI for communication 

 Frequently checkpoints: 

– Large blocks of typed variables 

from all processes 

– Portable format 

– Canonical ordering (different than 

in memory) 

– Skipping ghost cells 
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Example: FLASH with PnetCDF 

FLASH AMR structures do not map directly to netCDF 

multidimensional arrays 

Must create mapping of the in-memory FLASH data 

structures into a representation in netCDF 

multidimensional arrays 

Chose to 

– Place all checkpoint data in a single file 

– Impose a linear ordering on the AMR blocks 

• Use 4D variables 

– Store each FLASH variable in its own netCDF variable 

• Skip ghost cells 

– Record attributes describing run time, total blocks, etc. 
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Defining Dimensions 

int status, ncid, dim_tot_blks, dim_nxb, 
dim_nyb, dim_nzb; 

MPI_Info hints; 

/* create dataset (file) */ 

status = ncmpi_create(MPI_COMM_WORLD, filename, 
NC_CLOBBER, hints, &file_id); 

/* define dimensions */ 

status = ncmpi_def_dim(ncid, "dim_tot_blks", 
tot_blks, &dim_tot_blks); 

status = ncmpi_def_dim(ncid, "dim_nxb", 
nzones_block[0], &dim_nxb); 

status = ncmpi_def_dim(ncid, "dim_nyb", 
nzones_block[1], &dim_nyb); 

status = ncmpi_def_dim(ncid, "dim_nzb", 
nzones_block[2], &dim_nzb); 
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Creating Variables 

int dims = 4, dimids[4]; 

int varids[NVARS]; 

/* define variables (X changes most quickly) */ 

dimids[0] = dim_tot_blks; 

dimids[1] = dim_nzb; 

dimids[2] = dim_nyb; 

dimids[3] = dim_nxb;  

for (i=0; i < NVARS; i++) { 

status = ncmpi_def_var(ncid, unk_label[i], 
NC_DOUBLE, dims, dimids, &varids[i]); 

} 
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Same dimensions used 

for all variables 



Storing Attributes 

/* store attributes of checkpoint */ 

status = ncmpi_put_att_text(ncid, NC_GLOBAL, 
"file_creation_time", string_size, 
file_creation_time); 

status = ncmpi_put_att_int(ncid, NC_GLOBAL, 
"total_blocks", NC_INT, 1, tot_blks); 

status = ncmpi_enddef(file_id); 

 

/* now in data mode … */ 
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Writing Variables 

double *unknowns; /* unknowns[blk][nzb][nyb][nxb] 
*/ 

size_t start_4d[4], count_4d[4]; 
start_4d[0] = global_offset; /* different for each 

process */ 
start_4d[1] = start_4d[2] = start_4d[3] = 0; 
count_4d[0] = local_blocks; 
count_4d[1] = nzb;  count_4d[2] = nyb;  

count_4d[3] = nxb; 
for (i=0; i < NVARS; i++) { 

/* ... build datatype “mpi_type” describing 
values of a single variable ... */ 

/* collectively write out all values of a 
single variable */ 

ncmpi_put_vara_all(ncid, varids[i], start_4d, 
count_4d, unknowns, 1, mpi_type); 

} 
status = ncmpi_close(file_id); 
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tuple 



Inside PnetCDF Define Mode 

 In define mode (collective) 

– Use MPI_File_open to create file at create time 

– Set hints as appropriate (more later) 

– Locally cache header information in memory 

• All changes are made to local copies at each process 

At ncmpi_enddef  

– Process 0 writes header with MPI_File_write_at  

– MPI_Bcast result to others 

– Everyone has header data in memory, understands placement of 

all variables 

• No need for any additional header I/O during data mode! 
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Inside PnetCDF Data Mode 

 Inside ncmpi_put_vara_all (once per variable)  

– Each process performs data conversion into internal buffer 

– Uses MPI_File_set_view  to define file region 

• Contiguous region for each process in FLASH case 

– MPI_File_write_all collectively writes data 

At ncmpi_close  

– MPI_File_close ensures data is written to storage 

 

MPI-IO performs optimizations 

– Two-phase possibly applied when writing variables 

MPI-IO makes PFS calls 

– PFS client code communicates with servers and stores data 
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Inside Parallel netCDF:  Jumpshot view 
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1: Rank 0 write header 

(independent I/O) 

2: Collectively write 

app grid, AMR data 

3: Collectively 

 write 4 variables 

4: Close file 

I/O  

Aggregator 

Collective write File open File close Indep. write 



PnetCDF Wrap-Up 

PnetCDF gives us 

– Simple, portable, self-describing container for data 

– Collective I/O 

– Data structures closely mapping to the variables described 

 If PnetCDF meets application needs, it is likely to give 

good performance 

– Type conversion to portable format does add overhead 

Some limits on (old, common CDF-2) file format: 

– Fixed-size variable:  < 4 GiB 

– Per-record size of record variable: < 4 GiB 

– 232 -1 records  

– New extended file format to relax these limits (CDF-5, released in 

pnetcdf-1.1.0) 
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The HDF5 Interface and 
File Format 
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HDF5 

Hierarchical Data Format, from the HDF Group (formerly 
of NCSA) 

Data Model: 
– Hierarchical data organization in single file 

– Typed, multidimensional array storage 

– Attributes on dataset, data 

Features: 
– C, C++, and Fortran interfaces 

– Portable data format 

– Optional compression (not in parallel I/O mode) 

– Data reordering (chunking) 

– Noncontiguous I/O (memory and file) with hyperslabs 

Parallel HDF5 tutorial: 
– http://www.hdfgroup.org/HDF5/Tutor/parallel.html 
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http://www.hdfgroup.org/HDF5/Tutor/parallel.html
http://www.hdfgroup.org/HDF5/Tutor/parallel.html


HDF5 Groups and Links 

 

 

lat | lon | temp 
----|-----|----- 
 12 |  23 |  3.1 
 15 |  24 |  4.2 
 17 |  21 |  3.6 

Experiment Notes: 

Serial Number: 99378920 

Date: 3/13/09 

Configuration: Standard 3 

/ 

SimOut Viz 

HDF5 groups 

and links  

organize  

data objects. 
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HDF5 Dataset 

Data Metadata 
Dataspace 

3 

Rank 

Dim_2 = 5 

Dim_1 = 4 

Dimensions 

Time = 32.4 

Pressure = 987 

Temp = 56 

(optional) 

Attributes 

Chunked 

Compressed 

Dim_3 = 7 

Properties 

Integer            

Datatype 
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HDF5 Dataset 

Dataspace:     Rank = 2 

                Dimensions = 5 x 3 
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Datatype:       16-byte integer 

               

3 

5 

             V 



HDF5 Dataspaces  

Two roles: 
Dataspace contains spatial information (logical layout) about 

a dataset 

   stored in a file 
• Rank and dimensions 

• Permanent part of dataset  
definition 

 

 

 

Subsets: Dataspace describes application’s data buffer and 
data elements participating in I/O 
 
 

 

Rank = 2 

Dimensions = 4x6 

Rank = 1 

Dimension = 10 
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Basic Functions  

H5Fcreate (H5Fopen)       create (open) File 
 
 H5Screate_simple/H5Screate  create dataSpace 
 
    H5Dcreate (H5Dopen)    create (open) Dataset 
        
    H5Sselect_hyperslab      select subsections of data 
 
        H5Dread, H5Dwrite    access Dataset 
 
    H5Dclose        close Dataset 
 
 H5Sclose              close dataSpace 
 
H5Fclose         close File 
     

NOTE: Order not strictly specified. 

204 



205 

P0 

P1 
File 

Example: Writing dataset by rows 

P2 

P3 
NY 

NX 
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Writing by rows: Output of h5dump 

HDF5 ”grid_rows.h5" { 

GROUP "/" { 

 DATASET "dataset1" { 

      DATATYPE  H5T_IEEE_F64LE 

      DATASPACE  SIMPLE { ( 8, 5 ) / ( 8, 5 ) } 

      DATA { 

         18, 18, 18, 18, 18, 

         18, 18, 18, 18, 18, 

         19, 19, 19, 19, 19, 

         19, 19, 19, 19, 19, 

         20, 20, 20, 20, 20, 

         20, 20, 20, 20, 20, 

         21, 21, 21, 21, 21, 

         21, 21, 21, 21, 21 

      }  

   }  

}  



Initialize the file for parallel access 

  

/* first initialize MPI */ 

 

/* create access property list */ 

plist_id = H5Pcreate(H5P_FILE_ACCESS); 

 

/* necessary for parallel access */   

status = H5Pset_fapl_mpio(plist_id,                                          

MPI_COMM_WORLD, MPI_INFO_NULL); 

 

/* Create an hdf5 file */ 

file_id = H5Fcreate(FILENAME, H5F_ACC_TRUNC, 

H5P_DEFAULT, plist_id); 

 

status = H5Pclose(plist_id); 
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Create file dataspace and dataset 

  /* initialize local grid data */ 

 

/* Create the dataspace */ 

 

 

dimsf[0] = NX; 

dimsf[1] = NY; 

 

 

filespace = H5Screate_simple(RANK, dimsf,NULL); 

 

/* create a dataset */ 

dset_id = H5Dcreate(file_id, "dataset1”, 

H5T_NATIVE_DOUBLE, filespace, H5P_DEFAULT, H5P_DEFAULT, 

H5P_DEFAULT);  
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Create Property List 

  
/* Create property list for collective dataset 

write. */ 

 

plist_id = H5Pcreate(H5P_DATASET_XFER); 

 

/* The other option is HDFD_MPIO_INDEPENDENT */ 

H5Pset_dxpl_mpio(plist_id,H5FD_MPIO_COLLECTIVE); 
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P0 

P1 
File 

Calculate Offsets 

P2 

P3 
NY 

NX 

Every processor  has a 2d array, which holds the number 

of blocks to write and the starting offset 
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Memory 
File 

Example: Writing dataset by rows 

count[0] = dimsf[0]/num_procs 
count[1] = dimsf[1]; 
offset[0] = my_proc * count[0];  /* = 2 */ 
offset[1] = 0; 

count[0] 

count[1] 

offset[0] 

offset[1] 

Process 1 
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Writing and Reading Hyperslabs 

Distributed memory model: data is split among processes 

PHDF5 uses HDF5 hyperslab model 

Each process defines memory and file hyperslabs 

Each process executes partial write/read call 

– Collective calls 

– Independent calls 
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Create a Memory Space select hyperslab 

 
 
/* Create the local memory space */ 
memspace = H5Screate_simple(RANK, count, NULL); 
 
 
filespace = H5Dget_space (dset_id); 
 
/* Create the hyperslab -- says how you want to 
lay out data */ 
   
status = H5Sselect_hyperslab(filespace, 
H5S_SELECT_SET, offset, NULL, count, NULL); 
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Write Data 

 
 
status = H5Dwrite(dset_id, H5T_NATIVE_DOUBLE, 
memspace, filespace, plist_id, grid_data); 

Identifier for dataset 

“dataset1” 
Datatype 

Access Properties: 

We choose collective. 

This is where other 

optimizations could be 

added. 

Data buffer 

Then close every dataspace and file space that was opened 



Inside HDF5: Jumpshot view 
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1: Rank 0 writes initial structure 

(multiple independent I/O) 

3: Determine location  

For variable (orange) 

5: Rank 0 writes  

final md 

6: Close file 2: Collectively write  

grid, provenance data 

4: Collectively write  

variable (blue) 

Collective write File open File close Indep. write MPI_Allreduce 



HDF5 Wrap-up 

Tremendous flexibility: 300+ routines 

H5Lite high level routines for common cases 

Tuning via property lists 

– “use MPI-IO to access this file” 

– “read this data collectively” 

Extensive on-line documentation, tutorials (see “On Line 

Resources” slide) 

New efforts:  

– Journaling: make datasets more robust in face of crashes 

(Sandia) 

– Fast appends (finance motivated) 

– Single-writer, Multiple-reader semantics 

– Aligning data structures to underlying file system 
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Comparing I/O libraries 

 IOR to evaluate HDF5, pnetcdf somewhat artificial 
– HLL typically hold structured data 

HDF5, pnetcdf demonstrate performance parity for these 
access sizes (4 MiB) 

Some performance overhead in using HLL 
– Honestly more than expected 
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Other High-Level I/O libraries 

 NetCDF-4: http://www.unidata.ucar.edu/software/netcdf/netcdf-4/ 

– netCDF API with HDF5 back-end 

 ADIOS: http://adiosapi.org 

– Configurable (xml) I/O approaches 

 SILO: https://wci.llnl.gov/codes/silo/ 

– A mesh and field library on top of HDF5 (and others) 

 H5part: http://vis.lbl.gov/Research/AcceleratorSAPP/ 

– simplified HDF5 API for particle simulations 

 GIO: https://svn.pnl.gov/gcrm 

– Targeting geodesic grids as part of GCRM 

 PIO: 

–  climate-oriented I/O library; supports raw binary, parallel-netcdf, or serial-

netcdf (from master) 

 … Many more: my point: it's ok to make your own. 
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Parallel I/O Wrap-up 

Assess the cost benefit of using shared file parallel-IO for 

the lifetime of your project 

– How much overhead can you afford? 

– Slower runtime, could save years of post-processing, visualization 

and analysis time later 

Use high level parallel I/O libraries over MPI-IO.   

– They don’t cost you performance (sometimes improve it)  

– Gain: portability, longevity, programmability 

MPI-IO is the layer where most optimizations are 

implemented – tune these parameters carefully 

Watch out for the key parallel-I/O pitfalls – unaligned block 

sizes and small writes 

– MPI-IO layer can often solve these pitfalls on your behalf.  
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Lightweight Application 
Characterization with Darshan 

Thanks to Phil Carns (carns@mcs.anl.gov) for 
providing background material on Darshan. 
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Characterizing Application I/O 

How are are applications using the I/O system, and how 
successful are they at attaining high performance? 
 

Darshan (Sanskrit for “sight”) is a tool we developed for I/O 
characterization at extreme scale: 

 No code changes, small and tunable memory footprint (~2MB default) 

 Characterization data aggregated and compressed prior to writing 

 Captures: 

– Counters for POSIX and MPI-IO operations 

– Counters for unaligned, sequential, consecutive, and strided 
access 

– Timing of opens, closes, first and last reads and writes 

– Cumulative data read and written 

– Histograms of access, stride, datatype, and extent sizes 

 

221 

http://www.mcs.anl.gov/darshan/ 

P. Carns et al, “24/7 Characterization of Petascale I/O Workloads,” IASDS Workshop, held 

in conjunction with IEEE Cluster 2009, September 2009. 
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The Darshan Approach 

Use PMPI and ld wrappers to intercept I/O functions 

– Requires re-linking, but no code modification 

– Can be transparently included in mpicc 

– Compatible with a variety of compilers 

Record statistics independently at each process 

– Compact summary rather than verbatim record 

– Independent data for each file 

Collect, compress, and store results at shutdown time 

– Aggregate shared file data using custom MPI reduction operator 

– Compress remaining data in parallel with zlib 

– Write results with collective MPI-IO 

– Result is a single gzip-compatible file containing characterization 

information 
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Example Statistics (per file) 

 Counters: 

– POSIX open, read, write, seek, stat, etc. 

– MPI-IO nonblocking, collective, indep., etc. 

– Unaligned, sequential, consecutive, strided access 

– MPI-IO datatypes and hints 

 Histograms: 

– access, stride, datatype, and extent sizes 

 Timestamps: 

–  open, close, first I/O, last I/O 

 Cumulative bytes read and written 

 Cumulative time spent in I/O and metadata operations 

 Most frequent access sizes and strides 

 Darshan records 150 integer or floating point parameters per file, plus 

job level information such as command line, execution time, and 

number of processes.  
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sequential 

consecutive 

strided 

1 2 3 

1 2 3 

1 2 3 



Darshan Job Summary 
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 Job summary tool shows 

characteristics “at a 

glance”; available to all 

users 

 Shows time spent in read, 

write, and metadata 

 Operation counts, access 

size histogram, and 

access pattern 

 Early indication of I/O 

behavior and where to 

explore in further 

 Example: Mismatch 

between number of files 

(R) vs. number of header 

writes (L) 

 The same header is being 

overwritten 4 times in each 

data file 
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A Data Analysis I/O Example 

Why does the I/O take so long in this case? 
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 Variable size analysis data requires headers to contain size information 

 Original idea: all processes collectively write headers, followed by all processes 

collectively write analysis data 

 Use MPI-IO, collective I/O, all optimizations 

 4 GB output file (not very large) 

 

 

… 

Process

es 

I/O Time 

(s) 

Total Time 

(s) 

8,192 8 60 

16,384 16 47 

32,768 32 57 



A Data Analysis I/O Example (continued) 
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 Problem: More than 50% of time spent writing 

output at 32K processes. Cause: Unexpected 

RMW pattern, difficult to see at the application 

code level, was identified from Darshan 

summaries. 

 

 

 What we saw instead: RMW during the writing shown by overlapping red 

(read) and blue (write), and a very long write as well. 

 

 

 

 What we expected to see, read data followed 

by write analysis: 

 

 



A Data Analysis I/O Example (continued) 
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 Solution: Reorder operations to combine 

writing block headers with block payloads, 

so that "holes" are not written into the file 

during the writing of block headers, to be 

filled when writing block payloads. Also fix 

miscellaneous I/O bugs; both problems 

were identified using Darshan. 

 Result: Less than 25% of time spent 

writing output, output time 4X shorter, 

overall run time 1.7X shorter. 

 Impact: Enabled parallel Morse-Smale 

computation to scale to 32K processes on 

Rayleigh-Taylor instability data. Also used 

similar output strategy for cosmology 

checkpointing, further leveraging the 

lessons learned. 

 

Process

es 

I/O Time 

(s) 

Total Time 

(s) 

8,192 7 60 

16,384 6 40 

32,768 7 33 



Two Months of Application I/O on ALCF 
Blue Gene/P 

 After additional testing and 

hardening, Darshan installed on 

Intrepid 

 By default, all applications 

compiling with MPI compilers are 

instrumented 

 

 Data captured from late January 

through late March of 2010 

 Darshan captured data on 6,480 

jobs (27%) from 39 projects (59%) 

 Simultaneously captured data on 

servers related to storage utilization 
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Top 10 data producers and/or 

consumers shown. Surprisingly, 

most “big I/O” users read more data 

during simulations than they wrote.  

P. Carns et al, “Storage Access Characteristics of Computational Science Applications,” 

forthcoming. 
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Application I/O on ALCF Blue Gene/P 

Application Mbytes/

sec/CN* 

Cum. MD Files/P

roc 

Creates/

Proc 

Seq. 

 I/O 

Mbytes/P

roc 

EarthScience 0.69 95% 140.67 98.87 65% 1779.48 

NuclearPhysics 1.53 55% 1.72 0.63 100% 234.57 

Energy1 0.77 31% 0.26 0.16 87% 66.35 

Climate 0.31 82% 3.17 2.44 97% 1034.92 

Energy2 0.44 3% 0.02 0.01 86% 24.49 

Turbulence1 0.54 64% 0.26 0.13 77% 117.92 

CombustionPhysics 1.34 67% 6.74 2.73 100% 657.37 

Chemistry 0.86 21% 0.20 0.18 42% 321.36 

Turbulence2 1.16 81% 0.53 0.03 67% 37.36 

Turbulence3 0.58 1% 0.03 0.01 100% 40.40 
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P. Carns et al, “Storage Access Characteristics of Computational Science Applications,” forthcoming. 

* Synthetic I/O benchmarks (e.g., IOR) attain 3.93 - 5.75 Mbytes/sec/CN for modest 

job sizes, down to approximately 1.59 Mbytes/sec/CN for full-scale runs. 
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Darshan Summary 

Scalable tools like Darshan can yield useful insight 

– Identify characteristics that make applications successful 

– Identify problems to address through I/O research 

Petascale performance tools require special 

considerations 

– Target the problem domain carefully to minimize amount of data 

– Avoid shared resources 

– Use collectives where possible 

 

For more information: 

http://www.mcs.anl.gov/research/projects/darshan 
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Wrapping Up 

We've covered a lot of ground in a short time 
– Very low-level, serial interfaces 

– High-level, hierarchical file formats 

 

Storage is a complex hardware/software system 

 

There is no magic in high performance I/O 
– Lots of software is available to support computational science 

workloads at scale 

– Knowing how things work will lead you to better performance 

 

Using this software (correctly) can dramatically improve 
performance (execution time) and productivity 
(development time) 
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Printed References 

 John May, Parallel I/O for High Performance Computing, 

Morgan Kaufmann, October 9, 2000. 

– Good coverage of basic concepts, some MPI-IO, HDF5, and 

serial netCDF 

– Out of print? 

 William Gropp, Ewing Lusk, and Rajeev Thakur, Using 

MPI-2: Advanced Features of the Message Passing 

Interface, MIT Press, November 26, 1999. 

– In-depth coverage of MPI-IO API, including a very detailed 

description of the MPI-IO consistency semantics 
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On-Line References (1 of 4) 

 netCDF and netCDF-4 
– http://www.unidata.ucar.edu/packages/netcdf/ 

PnetCDF 
– http://www.mcs.anl.gov/parallel-netcdf/ 

ROMIO MPI-IO 
– http://www.mcs.anl.gov/romio/ 

HDF5 and HDF5 Tutorial 
– http://www.hdfgroup.org/ 

– http://www.hdfgroup.org/HDF5/ 

– http://www.hdfgroup.org/HDF5/Tutor 

POSIX I/O Extensions 
– http://www.opengroup.org/platform/hecewg/ 

Darshan I/O Characterization Tool 
– http://www.mcs.anl.gov/research/projects/darshan 
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On-Line References (2 of 4) 

 PVFS 
http://www.pvfs.org 

 Panasas 
http://www.panasas.com 

 Lustre 
http://www.lustre.org 

 GPFS 
http://www.almaden.ibm.com/storagesystems/file_systems/GPFS/ 
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On-Line References (3 of 4) 

 LLNL I/O tests (IOR, fdtree, mdtest) 

– http://www.llnl.gov/icc/lc/siop/downloads/download.html 

Parallel I/O Benchmarking Consortium (noncontig, mpi-

tile-io, mpi-md-test) 

– http://www.mcs.anl.gov/pio-benchmark/ 

FLASH I/O benchmark 

– http://www.mcs.anl.gov/pio-benchmark/ 

– http://flash.uchicago.edu/~jbgallag/io_bench/ (original version) 

 b_eff_io test 

– http://www.hlrs.de/organization/par/services/models/mpi/b_eff_io/ 

mpiBLAST 

– http://www.mpiblast.org 
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On Line References (4 of 4) 

NFS Version 4.1 

– 5661: NFSv4.1 protocol 

– 5662:  NFSv4.1 XDR Representation 

– 5663: pNFS Block/Volume Layout 

– 5664: pNFS Objects Operation 

 pNFS Problem Statement 

– Garth Gibson (Panasas), Peter Corbett (Netapp), Internet-draft, 

July 2004 

– http://www.pdl.cmu.edu/pNFS/archive/gibson-pnfs-problem-statement.html 

 Linux pNFS Kernel Development 
– http://www.citi.umich.edu/projects/asci/pnfs/linux 
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