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ABSTRACT

This white paper describes the issues 
confronting Linux compute clusters when 
using today’s storage architectures.  These 
issues suggests that a new storage architecture 
based on the Object-based Storage Device 
(OSD) can provide the file sharing capability 
needed for scientific and technical applications 
while delivering the performance and 
scalability needed to make the Linux cluster 
architecture effective.  This white paper also 
reviews the components of a storage system 
based on objects and the data flow through the 
system in typical storage transactions.  Next 
it summarizes the advantages of the Object-
based Storage Architecture in the areas of 
performance, scalability, manageability and 
security.  Finally it concludes with a survey 
of the history of the project and the current 
efforts to create a standard around the Object-
based Storage Architecture.. 
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BACKUP OVERVIEW

The Object-based Architecture is based on data Objects, which encapsulate user data (a file) and 
attributes of that data.  The combination of data and attributes allows an Object-based storage 
system to make decisions on data layout or quality of service on a per-file basis, improving flexibility 
and manageability.  The device that stores, retrieves and interprets these objects is an Object-based 
Storage Device (OSD).  The unique design of the OSD differs substantially from standard storage 
devices such as Fibre Channel (FC) or Integrated Drive Electronics (IDE), with their traditional 
block-based interface.  This is accomplished by moving low-level storage functions into the storage 
device and accessing the device through a standard object interface. Object-based Storage Device 
enables: 

Intelligent space management in the storage layer
Data-aware pre-fetching, and caching   

Ultimately, OSD-based storage systems can be created with the following characteristics:

Robust, shared access by many clients 
Scalable performance via an offloaded data path 
Strong fine-grained end-to-end security 

These capabilities are highly desirable across a wide range of typical IT storage applications.  They 
are particularly valuable for scientific, technical and database applications that are increasingly 
hosted on Linux cluster compute systems which generate high levels of concurrent I/O demand for 
secure, shared files.  The Object-based Storage Architecture is uniquely suited to meet the demands 
of these applications and the workloads generated by large Linux clusters. 

Each organization’s backup requirements are different; the type of backup scheme should be 
chosen to suit the needs of the organization. All of these backup schemes are a compromise 
between minimizing the backup window and minimizing the time to restore. However the backup 
is performed, it will have an impact not only on the storage, but also on the systems using that 
storage. Backing up data generated by active applications is not without risks. Although the 
backup and restore software may be able to read the data that the application is working on, that 
data may not be in a consistent state. This makes that backup data useless for restore purposes 
because it will put the application in an inconsistent state. A number of backup/restore software 
vendor address these issues by providing agents that cooperate with the applications that run on 
the customer’s server to make sure that the backups that are being made are consistent and can be 
used for restores.

The Linux Cluster Story  

The high-performance computing (HPC) sector has often driven the development of new computing 
architectures, and has given impetus to the development of the Object Storage Architecture.  Some 
history can provide an understanding of the importance of the Linux cluster systems, which 
are revolutionizing scientific, technical, and commercial computing.  HPC architectures took a 
fundamental turn with the invention of Beowulf clustering by NASA scientists at the Goddard 
Space Flight Center in 1994.  Development of the Message Passing Interface (MPI), Beowulf 
allowed racks of commodity Intel PC-based systems to emulate the functionality of monolithic 
Symmetric Multi-Processing (SMP) systems.  Since this can be done at less than 1/10th the cost of 
the highly specialized, shared memory systems, the cost of scientific research dropped dramatically.  
Beowulf clusters, now more commonly referred to as Linux clusters, are the dominant computing 
architecture for technical computing, and are quickly gaining traction in commercial industries as 
well.  
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Unfortunately, storage architectures have not kept pace, causing systems administrators to 
perform arduous data movement and staging tasks to get stored data into the Linux clusters.  
There are two main problems that the storage systems for clusters must solve.  First, they 
must provide shared access to the data so that the applications are easier to write and the 
storage is easier to balance with the compute requirements.  Second, the storage system 
must provide high levels of performance, in both I/O rates and data throughput, to meet the 
aggregated requirements of 100’s and in some cases up to 1000’s of servers in the Linux cluster. 

Linux cluster administrators have attempted several approaches to meet the need for shared files 
and high performance. Common approaches involve supporting multiple NFS servers or copying 
data to the local disks in the cluster.  But to date there has not been a solution that effectively 
stages and balances the data so that the power of the Linux compute cluster can be brought to bear 
on the large data sets typically found in scientific and technical computing.   

Aggregate Throughput and I/O

Due to the number of nodes in the cluster, the size of the data sets, and the concurrency of their 
access patterns, Linux clusters demand high performance from their storage system.  As Linux 
clusters have matured, the scale of the clusters has increased from 10’s of compute nodes to 1000’s 
of nodes.  This creates a high aggregate I/O demand on the storage subsystem even if the demand 
of any single node is relatively modest.  Applications, such as bioinformatics similarity searching, 
create demands on the system for very high random I/O access patterns while the compute nodes 
search through hundreds of thousands of small files.  Alternatively, high-energy physics modeling 
typically uses datasets containing files that are gigabytes in size, creating demand on the storage 
system for very high data throughput.  In either case, application codes running on many nodes 
across the Linux cluster creates a demand for highly concurrent access in both random I/O and 
high data throughput.  This level of performance is rarely seen in typical enterprise infrastructures 
and cause huge burdens on the storage systems. 

Shared Files  

Unlike the monolithic supercomputers that preceded Linux clusters, the data used in the compute 
process must be available to a large number of the nodes across the cluster simultaneously.  Shared 
access to storage lowers the complexity for the programmer by making data uniformly accessible 
rather than forcing the programmer to write the compute job for the specific node that has direct 
access to the relevant portion of the dataset.  Similarly, shared data eliminates the need for the 
system administrator to load the data to specific locations for access to the compute nodes or to 
balance the storage traffic in the infrastructure. 

In many applications the project is not a single analysis of a single dataset, but rather a series of 
analyses combining multiple datasets, where the results of one process provide inputs to the next.  
For example, geologic information in the oil and gas industry typically takes the raw seismic traces 
from time and depth migration analysis, and combines them with well-head information to create 
4-Dimensional (4D) visualizations.  Given the size of the data and results sets, simply moving the 
information between local and/or network storage systems could add days to the completion of the 
project and increase the likelihood of error and data loss.   

Sharing files across the Linux cluster substantially decreases the burden on the scientist writing 
the programs and the system administrator trying to optimize the performance of the system.  
However, providing shared access to files requires that there be a central repository for the file 
locations, known as the storage system metadata server, to track where each block of every file is 
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stored on disk and which node of the cluster is allowed to access that file.  If the metadata server 
also sits on the data path between the cluster nodes and the disk arrays, as nearly all file servers 
today are designed, it becomes a major bottleneck for scaling in both capacity and performance. 

CURRENT STORAGE ARCHITECTURES

There are two types of network storage systems, each distinguished by their command sets.  First 
is the SCSI block I/O command set, used by Storage Area Networks (SANs), which provides high 
random I/O and data throughput performance via direct access to the data at the level of the disk 
drive or fibre channel.  Second, the Network Attached Storage (NAS) systems that use NFS or 
CIFS command sets for accessing data with the benefit that multiple nodes can access the data as 
the metadata on the media is shared.  Linux clusters require both excellent performance and data 
sharing from their storage systems.  In order to get the benefits of both high performance and data 
sharing, a new storage design is required that provides both the performance benefits of direct 
access to disk and the ease of administration provided by shared files and metadata.  That new 
storage system design is the Object-based Storage Architecture. 

Architectural Breakthrough 

The Object Storage Architecture combines the two key 
advantages of today’s storage systems, performance and file 
sharing. When combined, these advantages eliminate the 
drawbacks that have made their previous solutions unsuitable 
for Linux cluster deployments.   
First, the Object Storage Architecture provides a method for 
allowing compute nodes to access storage devices directly 
and in parallel providing very high performance.  Second, it 
distributes the system metadata allowing shared file access 
without a central bottleneck.  The Object Storage Architecture 
offers a complete storage solution for Linux clusters without 
the compromises that today’s storage systems require in either 
performance or manageability. 

Parallel Data Access 

The Object Storage Architecture defines a new, more intelligent disk interface called the Object-
based Storage Device (OSD).  The OSD is a network-attached device containing the storage media, 
disk or tape, and sufficient intelligence to manage the data that is locally stored.  The compute 
nodes communicate directly to the OSD to store and retrieve data.  Since the OSD has intelligence 
built in there is no need for a file server to intermediate the transaction.  Further, if the file system 
stripes the data across a number of OSDs, the aggregate I/O rates and data throughput rates scale 
linearly.  For example, a single OSD attached to Gigabit Ethernet may be capable of delivering 
400 Mbps of data to the network and 1000 storage I/O operations, but if the data is striped across 
10 OSDs and accessed in parallel, the aggregate data rates achieve 4,000 Mbps and 10,000 I/O 
operations.  These peak rates are important, but for most Linux cluster applications, the aggregate 
sustained I/O and throughput rates from storage to large numbers of compute nodes are even more 
important.  The level of performance offered by the Object Storage Architecture is not achievable 
by any other storage architecture. 
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Distributed Metadata 

Current storage architectures are designed with a single monolithic metadata server that serves 
two primary functions.  First, it provides the compute node with a logical view of the stored data 
(the Virtual File System or VFS layer), the list of file names, and typically the directory structure 
in which they are organized.  Second, it organizes the data layout in the physical storage media 
(the inode layer).

The Object Storage Architecture divides the logical view of the stored data (VFS layer) from the 
physical view (the inode layer) and distributes the workload allowing the performance potential of 
the OSD to avoid the metadata server bottlenecks found in today’s NAS systems.  The VFS portion 
of the metadata typically represents approximately 10% of the workload of a typical NFS server, 
while the remaining 90% of the work is done at the inode layer with the physical distribution of 
data into storage media blocks.
   
In the Object Storage Architecture, the inode work is distributed to each intelligent OSD.  Each 
OSD manages the layout and retrieval of the data that is presented to it.  It maintains the metadata 
that associates the objects (files or portions of files) with the actual blocks on the storage media.  
Thus 90% of the metadata management is distributed among the intelligent storage devices that 
actually store the data.  If a file is striped across ten OSDs, no single device has to do more than 
10% of the work that a conventional metadata server must perform in a today’s NAS systems or 
file servers.  This provides an order of magnitude improvement in the performance potential for 
the system’s metadata management.  In addition, because the metadata management is distributed, 
adding more OSDs to the system increases the metadata performance potential in parallel with the 
increased capacity of the system.

OBJECT STORAGE COMPONENTS  

There are five major components to the Object Storage Architecture.
   

Object - Contains the data and enough additional information to allow the data to be 
autonomous and self-managing.   
Object-based Storage Device (OSD) - An intelligent evolution of today’s disk drive that 
can store and serve objects rather than simply putting data on tracks and sectors.   
Installable File System (IFS) - Integrates with compute nodes, accepts POSIX file system 
commands and data from the Operating System, address the OSDs directly and stripes 
the objects across multiple OSDs.   
Metadata Server - Intermediates throughout multiple compute nodes in the environment, 
allowing them to share data while maintaining cache consistency on all nodes.   
Network Fabric - Ties the compute nodes to the OSDs and Metadata Servers.

Objects 

The Object is the fundamental unit of data storage in this system.  Unlike files or blocks, which 
are used as the basic components in conventional storage systems, an object is a combination of 
file data plus a set of attributes that define various aspects of the data. These attributes can define 
on a per file basis the RAID levels, data layouts, and quality of service.  Unlike conventional block 
storage where the storage system must track all of the attributes for each block in the system, the 
object maintains its own attributes to communicate with the storage system how to manage each 
particular piece of data.  This simplifies the task of the storage system and increases its flexibility 

•
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by distributing the management of the data with the data itself.

Within the storage device, all objects are accessed via a 96-bit object ID.  The object is accessed 
with a simple interface based on the object ID, the beginning of the range of bytes inside the 
object and the length of the byte range that is of interest (<object, offset, length>).  There are 
three different types of objects.  The “Root” object on the storage device identifies the storage 
device and various attributes of the device itself, including it’s total size and available capacity.  A 
“Group” object provides a “directory” to logical subset of the objects on the storage device.  A 
“User” object carries the actual application data to be stored. 

The user object is a container for data and two types of attributes.   

Application Data - The application data is essentially the equivalent to the data that a file 
would normally have in a conventional system.  It is accessed with file-like commands 
such as Open, Close, Read, and Write. 
Storage Attributes – These attributes are used by the storage device to manage the block 
allocation for the data.  This includes the object ID, block pointers, logical length, 
and capacity used.  This is similar to the inode-level attributes inside a traditional file 
system.  There is also a capability version number used when enforcing access control 
to objects. 
User Attributes – These attributes are opaque to the storage device and are used by 
applications and metadata managers to store higher-level information about the object.  
These attributes can include file system attributes like ownership and access control 
lists (ACLs), which are not directly interpreted by the storage device as described later.  
Attributes can describe Quality of Service requirements that apply specifically to a 
given object.  These attributes can tell the storage system how to treat an object, for 
instance what type of RAID to apply, the size of the capacity quota or the performance 
characteristics required for that data. 

Object-based Storage Device 

The Object-based Storage Device represents the next generation of disk drives for network storage.  
The OSD is an intelligent device that contains the disk, a processor, RAM memory and a network 
interface that allows it to manage the local object store, and autonomously serve and store data 
from the network.  It is the foundation of the Object Storage Architecture, providing the equivalent 
of the SAN fabric in conventional storage systems.  In the “Object SAN,” the network interface is 
gigabit Ethernet instead of fibre channel and the protocol is iSCSI, the encapsulation of the SCSI 
protocol transported over TCP/IP.  SCSI supports several command sets, including block I/O, tape 
drive control, and printer control.  The new OSD command set describes the operations available 
on Object-based Storage Devices.  The result is a group of intelligent disks (OSDs) attached to 
a switched network fabric (iSCSI over Ethernet) providing storage that is directly accessible by 
the compute nodes.  Unlike conventional SAN configurations, the Object Storage Devices can be 
directly addressed in parallel, without an intervening RAID controller, allowing extremely high 
aggregate data throughput rates. 

The OSD provides four major functions for the data storage architecture: 

Data Storage – The primary function in any storage device is to reliably store and 
retrieve data from physical media.  Like any conventional storage device; it must manage 
the data as it is laid out into standard tracks and sectors.  The data is not accessible 
outside the OSD in block format, only via their object IDs.  The compute node requests 

•
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a particular object ID, an offset to start reading or writing data within that object and 
the length of the data block requested. 
Intelligent Layout – The OSD uses its memory and 
processor to optimize the data layout on the disk and 
pre-fetching of data from the disk. The object and 
its protocol provide additional information about 
the data that is used to help make layout decisions. 
For example, the object metadata provides the length 
of data to be written, allowing a contiguous set of 
tracks to be selected. Using a write-behind cache, a 
large amount of the write data can then be cached and 
written in a small number of efficient passes across the 
disk platter. Similarly the OSD can do intelligent read-
ahead or pre-fetching, of the blocks for an object and 
have them available in buffers for maximum access 
performance. 
Metadata Management – The OSD manages the 
metadata associated with the objects it stores. This 
metadata is similar to conventional inode data 
including the blocks associated with an object and 
the length of the object. In a traditional system, this 
data is managed by the file server (for NAS) or by the 
host operating system (for direct-attached or SAN). 
The Object Storage Architecture distributes the work of managing the majority of the 
metadata in the storage system to the OSDs and lowers the overhead on the host compute 
nodes. The OSD also reduces the metadata management burden on the Metadata Server 
by maintaining one component object per OSD, regardless of how much data that 
component object contains. Unlike traditional systems where the Metadata Server must 
track each block in every stripe, on every drive; successive object stripe units are simply 
added to the initial component object. The component objects grow in size, but for each 
object in the system, the Metadata Server continues to track only one component object 
per OSD reducing the burden on the Metadata server, and increasing its scalability. 
Security – There are two ways the object protocol improves security over SAN or 
NAS network storage systems. First, object storage is a network protocol and like any 
network transaction (SAN or NAS) it is potentially vulnerable to an external attack. In 
addition, it allows distributed access to the storage array from the host nodes (similar 
to a SAN), which can allow a node to intentionally or unintentionally (via an operating 
system failure) attempt to write bad data or into bad locations. Implementing the OSD 
architecture takes security to a new level by eliminating the need to trust clients external 
to the system. Each command or data transmission must be accompanied by a capability 
that authorizes both the sender and the action. The capability is a secure, cryptographic 
token provided to the compute node. The token describes to the OSD, which object 
that the compute node is allowed to access, with what privileges, and for what length 
of time. The OSD inspects each incoming transmission for the proper authorization 
capabilities and rejects any that are missing, invalid or expired.

•

•
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Distributed File System

In order for the compute nodes to read and write objects directly to the OSDs, an installable file 
system must be deployed.  The distributed file system provides four key functions in the Object 
Storage Architecture.

POSIX File System Interface – The distributed file system must provide a transparent 
interface to the applications above it.  The distributed file system will provide a POSIX 
interface to the application layer which allows the application to perform standard 
file system operations such as Open, Close, Read and Write files to the underlying 
storage system.  In addition, it must support a full set of permissions and access controls 
expected by Linux applications, allowing it to have exclusive or shared access to any 
given file.   
Caching – The distributed file system must provide caching in the compute node for 
incoming data complementing the cache in the OSD.  There will also be a cache for 
write data that aggregates multiple writes for efficient transmission and data layout at 
the OSDs.  A third cache must be maintained for metadata and security tokens, so that 
the client can quickly generate secure commands to access data on the OSDs for which 
they have been given permission.   
Striping/RAID – The distributed file system must 
handle the striping of objects across multiple 
OSDs on a per object basis.  Unlike standard 
RAID arrays, an object distributed file system 
can apply a different data layout and RAID level 
to each object.  The distributed file system takes 
an object and breaks it down to component 
objects, which are the subset of an object sent to 
each OSD.  The size of each component object 
(stripe unit size) is specified as an attribute of the 
object. The stripe width, or the number of OSDs 
that the object is striped across, is also specified 
as an attribute of the object.  Because the object 
is read or written in parallel, the width of the 
stripe will correlate directly to the bandwidth of 
the object.  If RAID is specified, the parity unit 
will be calculated by the client and applied to 
the object stripe.   
iSCSI – The distributed file system must implement an iSCSI driver which encapsulates 
the SCSI command set, the Object extensions to the command set and the data payload 
across a TCP network in order to transmit and receive data from the OSDs.  TCP/
IP accelerators (called TCP Offload Engines or TOE) can provide the iSCSI and TCP 
protocol processing which offloads TCP and iSCSI processing from the compute node 
to the TOE adapter. 
Mount – All clients mount the file system at the root, using access controls to determine 
access to different portions of the file tree.  Authentication mechanisms are required 
such as Kerberos, Windows NTLM, and Active Directory.  The identity of the compute 
nodes must be maintained via these authentication mechanisms, UID/GIDs for Unix and 
SIDs for Windows systems. 
Additional file system interfaces – Beyond a POSIX interface, other application interfaces 
such as Message Passing Interface for I/O (MPI-IO) may be useful.  This interface allows 
parallel application writers to more efficiently control the layout of the data across 
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the OSDs via low-level ioctls in the file system.  This can be useful for creating very 
wide stripes for massive bandwidth or to allow cluster checkpointing to a single file for 
maximum restart flexibility.  Two MPI-IO implementations are widely used, MPICH/
ROMIO from Argonne Labs and MPI Pro from MSTI, which will also support the MPI-
2 standard.

Metadata Server 

The Metadata Server (MDS) controls the interaction of the compute nodes with the objects on the 
OSDs by coordinating access to nodes that are properly authorized. The MDS is also responsible 
for maintaining cache consistency for users of the same file.  In NAS systems, the metadata server 
(filer head) is an integral part of the data path, causing significant bottlenecks as traffic increases.  
The Object Storage approach removes the Metadata Server from the data path allowing high 
throughput and more linear scalability that are typically associated with SAN topologies that allow 
clients to interact directly with the storage devices.  The Metadata Server provides the following 
services for the Storage Cluster: 

Authentication – The first role of the MDS is to identify and authenticate Object-based 
Storage Devices wishing to join the storage system.  The MDS provides credentials 
to new storage system members and checks/renews those credentials periodically to 
assure that they are valid members.  Similarly when a compute node wants access to the 
storage system, the MDS assures its identity and provides authorization.  In the case of 
a compute node, it must turn the work of authentication over to an external service, 
which provides this service for the organization at large.   
File and Directory Access Management – The MDS provides the compute node with the 
file structure of the storage system.  When the node requests to perform an operation on 
a particular file, the MDS examines the permissions and access controls associated with 
the file and provides a map and a capability to the requesting node.  The map consists 
of the list of OSDs and their IP addresses, containing the components of the object in 
question.  The capability is a secure, cryptographic token provided to the compute node, 
which is examined by the OSD with each transaction.  The token describes to the OSD, 
which object that the compute node is allowed to access, with what privileges, and for 
what length of time.   
Cache Coherency – In order to achieve maximum performance, compute nodes will 
normally request the relevant object, and then work out of locally cached data.  If there 
are multiple nodes using the same file, steps must be taken to assure that the local caches 
are updated if the file is changed by any of the nodes.  The MDS provides this service 
with distributed object locking or callbacks.  When a compute node asks for Read or 
Write privileges to a file or a portion of a file from the MDS, a callback is registered 
with the MDS.  If the file privileges allow multiple writers, and is modified by another 
node, the MDS generates a callback to all of the nodes that have the file open, which 
invalidates their local cache.  Thus, if the node has Read access to a file that has been 
updated, it must go back to the OSDs to refresh its locally cached copy of that data, 
thereby assuring that all nodes are operating with identical data. 
Capacity Management – The MDS must also track the balance of capacity and utilization 
of the OSDs across the system to make sure that the overall system makes optimum use 
of the available disk resources.  When a compute node wants to create an object, the 
MDS must decide how to optimize the placement of the new file as it authorizes the 
node to write the new data.  Since the node does not know how large the file will be at 
the time of file creation, the MDS provides the node with an escrow, or quota, of space.  
This allows the node to maximize the performance of the write operation by creating 

•

•

•

•



11

and writing data in one step.  Any excess quota is recovered once the file is closed 
maintaining maximum performance during the critical write operations. 
Scaling - Metadata management is the key architectural issue for storage systems 
attempting to scale in capacity and performance.  Because the Object Storage Architecture 
separates file/directory management from block/sector management, it can scale to levels 
greater than any other storage architecture.  It distributes the block/sector management 
to the OSDs (which is approximately 90% of the workload) and maintains the file/
directory metadata management (10% of the workload) in a separate server that can also 
be implemented as a scalable cluster. The scalability of the MDS is the key to allowing 
the entire object storage system to scale, balanced in both capacity and performance. 

Network Fabric 

The network is a key element of the Object Storage Architecture.  It provides the connectivity 
infrastructure that binds the Object-based Storage Devices, Metadata Server and compute nodes in 
a single fabric.  With the advent of inexpensive gigabit Ethernet, it became possible to run storage 
traffic at speeds that meet or exceed specialized storage transports like fibre channel.  This gives the 
Object Storage Architecture two advantages, the lower component costs implied by the commodity 
status of Ethernet, and more importantly, the lower management costs associated widespread 
knowledge of building reliable Ethernet fabrics.  However, the Object Storage Architecture is 
wedded only to TCP/IP, rather than Ethernet.  It is possible to build an Object Storage system 
on other transports such as Myrinet and InfiniBand using their support for TCP/IP.  The Object 
Storage Architecture has three key network components:

iSCSI – As described above, the iSCSI protocol is used as the basic transport for 
commands and data to the OSDs, encapsulating SCSI inside of a TCP/IP packet.  The 
SCSI Command Data Blocks (CDB) deliver the commands to the storage device to read 
and write data, as well as the data payload itself.  The iSCSI protocol has been extended 
to support the object command set, yet remain within the iSCSI protocol definitions. 
RPC Command Transport – The Object Storage Architecture has a separate protocol 
for communication between compute nodes and Metadata Servers.  This is a lightweight 
Remote Procedure Call (RPC) that facilitates fast communication with the Metadata 
Server.   
 Other Services – Many standard TCP/IP services are also needed to build Object 
Storage systems.  For instance, NTP is used to synchronize compute nodes with the 
storage system, DNS is needed to simplify address translation and maintenance, and 
the various routing protocols allow the compute nodes to be separated from the storage 
system.  Fortunately such services are well established in the TCP/IP world and by 
taking advantage of them, the Object Storage Architecture can benefit from their wide 
availability and interoperability.

•
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OBJECT STORAGE OPERATION

Below is a description of the data flow and how a transaction in an object storage system moves 
through the system.

READ Operations

An Object READ transaction consists of the following: 
1. Client Initially Contacts Metadata Server 

Once the Distributed File System software is installed 
on the compute node and the file system is mounted, 
the compute node contacts the Metadata Server via an 
RPC (Remote Procedure Call) to a DNS name or IP 
address, configured in the compute node’s etc/fstab file 
during installation. At this point, the Metadata Server 
validates and authenticates the identity of the node via 
NTLM, Kerberos or similar. The compute node reads 
the root directory object for the list of directories in the 
storage system and gets back a list of directory names.

The compute node now understands the topology of 
the storage system and is able to contact the Metadata 
Server in order to acquire a Capability and Map. This 
is the first step of the process by which the Metadata 
Server (or set of Metadata Servers) manages the access 
policies for the entire storage cluster.

2a. Metadata Server Returns List of Objects 
Having received a request for access to an object 
within a Directory that it manages, the Metadata 
Server consults its Object Map and returns to the 
compute node a list of OSDs, by IP address, and the 
name of the component object that resides on each 
OSD. Assuming that the file is large enough, the 
number of OSDs will be related to the stripe width 
of the file. This gives the client the autonomy to 
communicate directly with the OSDs.

2b. Metadata Server Also Returns a security Capability 
The Metadata Server also sends a Capability, or 
security token, which authorizes the node to access 
the specific component objects, at specific offsets, 
with a specific set of permissions, for a specific length 
of time.  This properly authenticates an untrusted 
node and restricts their ability to interact with the data stored on the OSDs.  The node 
cannot maliciously or unintentionally (via a bug for instance) cause harm to data other 
than that allowed by the Metadata Server.  The Metadata Server also sets a callback with 
the node that allows the Metadata Server to notify the node if another node is attempting 
to change the data in that file or portion of the file.  If the node receives a callback, it must 
go back to the Metadata Server to renew its access to the file and then update its local 
cache from the OSDs.  
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This allows all nodes across the system to maintain 
cache consistency without resorting to a central lock 
manager that becomes a performance bottleneck in 
large systems.  

3.  Client Sends Read Requests Directly to OSD
Along with Capability  
The node then packages the request in an iSCSI 
transaction to read all or some of the data that it is 
authorized for and sends it to the OSD. It also includes 
the Capability in the Read request, which is inspected 
by the OSD to insure that the requester is properly 
authorized by the Metadata Server to access the data. 

4. Direct-data Transfer Between Client and OSD 
In this example, the node has sent its read request to 
ten OSDs simultaneously.  At that point, all ten of 
the OSDs have outstanding requests for component 
objects from the compute node.  All of the OSDs 
begin transmitting the requested component objects in 
parallel, generating approximately 40 MB/s per OSD 
or a potential peak rate of 400 MB/s for this file (if the 
client could accept this data rate).  Unlike a traditional 
system requesting a series of blocks, the Object 
Architecture allows very efficient communication 
about the desired transaction and allows the OSD to 
be intelligent about how it responds to the request.  
Where a traditional system may read ahead some of 
the adjacent blocks hoping to have the right data in 
cache, the OSD knows where the complete component 
object is, regardless of the physical location of the blocks on the disk, and can read ahead 
with a much higher likelihood that the data it puts in cache will be required for the next 
transaction.

WRITE Operations  

An Object WRITE transaction is similar to the READ transaction described above and consists of 
the following: 
1. Client Initially Contacts Metadata Server  

As in the READ request, for the first step in the data flow, the compute node contacts the 
Metadata Server, is authenticated and makes a request to WRITE an object. 

2a.  Metadata Server Returns a List of Objects  
The Metadata Server keeps a table of least utilized OSDs and returns a reference to two 
OSDs, by IP address, allowing the node to write some data and create a RAID 1 mirror.   

2b. Metadata Server Also Returns a Security Capability 
The Metadata Server sends a Capability, or security token, to the node authorizing the 
node to write a certain amount of data, with a specific set of permissions, for a specific 
length of time. 
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The Metadata Server again sets a callback with the node that allows the Metadata Server 
to notify the node if another node is attempting to change the data in that file or portion 
of the file.   

3.  Client Sends Write Requests Directly to OSD with Capability
The node then packages the WRITE request, the Capability and up to 64K of data, in an 
iSCSI transaction to the two OSDs simultaneously. 

4.  Direct-Data Transfer Between Client and OSD 
If the node acquires more data to write (or if the buffer was more than 64K to start with) 
the node will request additional space from the Metadata Server and continue writing.  For 
example, if there is a megabyte to write with a stripe width of ten OSDs, the Metadata Server 
will provide the map to the OSDs, and the Capability authorizing the write and escrowing 
the quota size for the write.  The node will then write to all ten OSDs simultaneously with 
nine data component objects and one parity component for RAID 5 data protection.  If the 
unit size of each component write is 64K, the first stripe will be 576K, requiring a second 
stripe.  Instead of creating a new set of components for the second stripe, the existing 
components are expanded with additional data, reducing the number of transactions with 
the Metadata Server and providing the OSD greater autonomy to efficiently manage data 
layout.

OBJECT STORAGE ARCHITECTURE ADVANTAGES 

While the Object Storage Architecture offers significant benefits for a wide variety of storage 
applications, it is uniquely qualified to solve the scaling issues that plague cluster computing 
environments.  The primary advantage of the Object Storage Architecture comes from its shared-
nothing cluster-based design, which allows the storage system to scale in performance and capacity 
just like the cluster compute system. 

Performance 

The Object Storage Architecture removes the central metadata manager bottleneck found in all 
other shared storage systems.  NAS systems use a central file server as the metadata manager, 
while some SAN file systems use a central lock manager, but ultimately metadata management 
becomes a bottleneck.  The Object Storage Architecture is fundamentally similar to a SAN, where 
each node has direct access to its storage devices allowing access at aggregate disk stripe rates.  
The Object Storage Architecture improves on the basic SAN design by getting rid of the RAID 
controller bottleneck allowing RAID stripes to be read in parallel and thus the aggregate RAID 
stripe throughput from a single file to be large.  The benefit is magnified as you scale the compute 
cluster to large numbers of nodes.  The total throughput for all of the nodes is eventually limited 
only by the size of the storage system and the performance of the network fabric.   

This kind of very high throughput is particularly valuable in cluster computing applications that 
synchronize their reads or when the large number of compute nodes creates a high peak throughput 
demand to the storage sub-system.  In a traditional system the WRITE commands generate a series 
of blocks written out to sectors and tracks on disk all of which need to be managed by the NAS filer 
head in order to optimize the placement of the data onto the media creating a significant burden 
on the filer head.  The Object Storage node is sending data to the OSDs, which can autonomously 
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worry about optimizing placement of the data on the media.  This minimizes the burden on the 
compute node and allows it to write to multiple OSDs in parallel, maximizing the throughput of a 
single client, but also allowing the storage system to handle the aggregated writes of a large cluster.  
This can be especially important in applications that use checkpointing where all compute nodes 
run to a barrier in the application and then write their physical memory out to storage. 

Scalabil ity 

The Object Storage Architecture leverages the same fundamental principles as the original Beowulf 
compute cluster model.  By distributing the workload to many intelligent subsystems, using the 
network fabric and sophisticated software to tie them together, scalability boundaries are eliminated 
and new types of problems and applications can be addressed.  An Object Storage system has 
intelligent OSDs that have memory and processor that allow them to add storage processing power 
independently of the rest of the system.  If an Object Storage system does not have sufficient 
storage processing power, adding OSDs will increase it almost linearly.  Assuming the files are 
reasonably well distributed across the storage system, the additional OSDs add component object 
handling capacity independent of all other factors save two: network capacity and MDS capacity. 

OSD Offloads 90% of Workload from Metadata Servers 

Metadata management capacity is the typical bottleneck for any shared storage system, since it 
is the one place where all compute nodes and storage nodes must be coordinated.  This is a key 
innovation in the Object Storage Architecture.  As described in the Metadata Server section, there 
are two components to metadata: inode metadata - managing block layout on the media which 
accounts for approximately 90+% of the work in the system; and the file metadata – the hierarchy 
of file and directory names that the compute nodes need to navigate the file system, which accounts 
for the remaining 10%.  The key benefit of the Object Storage Architecture is that it increases MDS 
scalability is to make the OSD responsible for its own inode metadata so that adding an OSD adds 
90% of the metadata management resources needed to support the additional storage capacity of 
that OSD.  Unlike a typical NAS server that gets slower as you add more disks, the Object Storage 
systems maintain a consistent level of throughput even as additional capacity is added. 

The table below shows the results of a key experiment performed at Carnegie Mellon University 
(CMU) as part of the NASD program at the Parallel Data Lab, which provided the architectural 
underpinnings of today’s Object Storage Architecture.  This table compares two NFS servers; the 
first is a standard NAS server and the second, an Object-based server.  It compares the number of 
MDS processor cycles required to support the most frequent NFS operations in a standard workload.  
As compared to a standard NFS server the Object-based MDS required only 7% of the processor 
cycles to accomplish a typical file sharing workload containing these key NFS operations.  These 
results represent an order of magnitude improvement in MDS efficiency.  This was accomplished 
by distributing the majority of the metadata management operations to the OSDs rather than 
executing them at the MDS where they represent a bottleneck to performance and scalability.   
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This experiment showed how a single metadata server could be 10 times more efficient with 
the Object Storage Architecture.  In order to completely eliminate barriers to scaling, multiple 
metadata servers can be clustered in the Object Storage Architecture, dividing the file system 
namespace among themselves and cooperate to provide service atomically, where there is no shared 
data with other MDSs, allowing the “shared-nothing” approach to scale. 

Management   

The distributed intelligence of the Object Storage Architecture provides many opportunities to 
minimize or eliminate time-consuming and error-prone management tasks often found in other 
high performance storage systems.  The core tasks associated with managing and optimizing the 
data layout of the system are eliminated.  For instance, new capacity is automatically incorporated 
into the storage system since an OSD that is ready to receive component objects when asked by the 
compute nodes.  No LUNs need to be created, no partitions resized, no volumes re-balanced, and 
no file server to upgrade.  Also note that RAID stripes are automatically expanded for new objects, 
to take advantage of the additional OSD without intervention by the System Administrator.   

Security 

Storage has typically relied on authentication of the clients and private networks to guarantee the 
security of the system, whether it’s a fibre channel SAN or a SCSI array inside a file server.  The 
Object Storage Architecture provides security at every level: 

Authentication of the storage devices to the storage system 
Authentication of compute nodes to the storage system 
Authorization for compute node commands to the storage system 
Integrity checking of all commands via CRC checks 
Privacy of data and commands in flight via IPsec  

This level of security can give customers confidence that they can use more cost effective, manageable 
and easily accessible networks, such as Ethernet for storage traffic while improving overall storage 
system security. 

Standards 

The Object-based Storage Device interface standardization effort can be traced directly to DARPA 
sponsored research “Network Attached Secure Disks” conducted between 1995 and 1999 at CMU 
by Panasas Founder, Dr. Garth Gibson. Building on CMU’s RAID research at the Parallel Data 
Lab (www.pdl.cmu.edu) and the Data Storage Systems Center (www.dssc.ece.cmu.edu), NASD was 
tasked to “enable commodity storage components to be the building blocks of high-bandwidth, 
low-latency, secure scalable storage systems.” 

From Dr. Gibson’s prior experience defining the RAID taxonomy at UC-Berkeley in 1988, there 
was an understanding that it was industry adoption of revolutionary ideas that yields impact on 
technology.  In 1997 CMU initiated an industry working group in the National Storage Industry 
Consortium (now www.insic.org).  This group, including representatives from CMU, HP, IBM, 
Seagate, StorageTek and Quantum, worked on the initial transformation of CMU NASD research 
into what became, in 1999, the founding document of “Object-based Storage Device” working 
groups in the Storage Networking Industry Association (www.snia.org/osd) and the ANSI X3 
T10 (SCSI) standards body (www.t10.org).  Since that time, the OSD working group in SNIA 

•
•
•
•
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has guided the evolution of Object Storage interfaces, as member companies experiment with the 
technology in their R&D labs.  Today the SNIA OSD working group is co-led by Intel and IBM 
with participation from across the spectrum of storage technology companies. 
Panasas has made a commitment to continue to help drive the development of standards based on 
the Object Storage Architecture.  Rather than the traditional approach of trying to build a business 
based on proprietary, closed systems, Panasas believes that customers will benefit if an industry is 
built around the Object Storage Architecture.  Therefore, we are also working with key members of 
the file system community, some of who are already involved with Object Storage through the ANSI 
X3 T10 work.  Panasas has developed a standard file system that can fully exploit the capabilities 
of the Object-based Storage Device with the vision that an Object Storage Architecture-based 
parallel file system eventually becoming as ubiquitous as NFS v3 is today.  To that end, Panasas has 
committed to working with its partners to make sure that open-source, reference implementations 
of the file system are available and that the file system is driven through an open standards process.  
This is intended to lay the foundation for an industry around the Object Storage Architecture that 
has interoperable Object-based Storage Devices, Metadata Controllers and a parallel, object-based 
file system. 

CONCLUSION

The Object Storage Architecture provides a single-system-image file system with the traditional 
sharing and management features of NAS systems and improves on the resource consolidation and 
scalable performance of SAN systems.  This combination of performance, scalability, manageability 
and security could only be accomplished by creating a major revolution in storage architectures.  
The first product supporting the Object Storage Architecture was released as the Panasas ActiveScale 
Storage Cluster.  It has since been deployed at multiple National Laboratories, key seismic processing 
organizations and well as biotech organizations.  All are using Linux clusters to solve key scientific 
problems that were unattainable with monolithic supercomputers.  They all expect to be able to 
address new types of problems that required high performance, scalable, shared storage that was 
not available to the market prior to the Panasas system.  The Panasas Parallel Storage Cluster and 
the Object-based Storage Architecture have demonstrated that they can meet the challenge posed 
by the Beowulf/Linux cluster compute architectures, where traditional SAN, NAS and DAS-based 
products fall short.


