
Parallel I/O in Practice

Rob Latham and Rob Ross
Math and Computer Science Division

Argonne National Laboratory
robl@mcs.anl.gov, rross@mcs.anl.gov

Marc Unangst and Brent Welch
Panasas, Inc.

mju@panasas.com, welch@panasas.com

1

Computational Science

  Use of computer simulation as a tool for
greater understanding of the real world
–  Complements experimentation and theory

  Problems are increasingly computationally
challenging
–  Large parallel machines needed to

perform calculations
–  Critical to leverage parallelism in all

phases
  Data access is a huge challenge

–  Using parallelism to obtain performance
–  Finding usable, efficient, portable

interfaces
–  Understanding and tuning I/O

2

Visualization of entropy in Terascale
Supernova Initiative application. Image from
Kwan-Liu Ma’s visualization team at UC Davis.

IBM Blue Gene/P system at Argonne
National Laboratory.

Goals of This Tutorial

 Cover parallel I/O systems from bottom
(storage) to top (high-level I/O libraries)

 Provide an understanding of how these pieces
fit together to provide a resource for
computational science applications

  Introduce the interfaces that one can use to
access storage at various levels

 Describe both “entrenched” interfaces and ones
that are on the horizon

3

About Us

  Rob Latham (robl@mcs.anl.gov)
–  Senior Software Developer, MCS Division, Argonne National Laboratory
–  Parallel Virtual File System
–  ROMIO MPI-IO implementation
–  Parallel netCDF high-level I/O library

  Rob Ross (rross@mcs.anl.gov)
–  Computer Scientist, MCS Division, Argonne National Laboratory
–  Parallel Virtual File System
–  SciDAC Scientific Data Management Center
–  High End Computing Interagency Working Group (HECIWG) for File Systems and I/O

  Brent Welch (welch@panasas.com)
–  Director of Architecture, Panasas
–  Berkeley Sprite OS Distributed Filesystem
–  Panasas ActiveScale Filesystem
–  IETF pNFS

  Marc Unangst (mju@panasas.com)
–  Software Architect, Panasas
–  CMU NASD object storage & distributed filesystem
–  Panasas ActiveScale Filesystem
–  SPEC SFS

4

Outline of the Day

 Introduction
 Storage system models
 File systems (part 1)

 Break

 File systems (part 2)
 Benchmarking
 POSIX

 Lunch

 MPI-IO
 Parallel netCDF
 HDF5
 New and upcoming user

interfaces

 Break

 I/O Understanding and
tuning

 Future storage
technologies

 Closing remarks

5

“There is no physics without I/O.”
– Anonymous Physicist

SciDAC Conference
June 17, 2009

(I think he might have been kidding.)

6

Large-Scale Data Sets
Application teams are beginning to generate 10s of Tbytes of data in a single
simulation. For example, a recent GTC run on 29K processors on the XT4
generated over 54 Tbytes of data in a 24 hour period [1].

PI
 Project
 On-Line Data
Off-Line Data

Lamb, Don FLASH: Buoyancy-Driven Turbulent Nuclear Burning 75TB 300TB
Fischer, Paul Reactor Core Hydrodynamics 2TB 5TB
Dean, David Computational Nuclear Structure 4TB 40TB
Baker, David Computational Protein Structure 1TB 2TB
Worley, Patrick H. Performance Evaluation and Analysis 1TB 1TB
Wolverton, Christopher Kinetics and Thermodynamics of Metal and

Complex Hydride Nanoparticles
5TB 100TB

Washington, Warren Climate Science 10TB 345TB
Tsigelny, Igor Parkinson's Disease 2.5TB 50TB
Tang, William Plasma Microturbulence 2TB 10TB
Sugar, Robert Lattice QCD 1TB 44TB
Siegel, Andrew Thermal Striping in Sodium Cooled Reactors 4TB 8TB
Roux, Benoit Gating Mechanisms of Membrane Proteins 10TB 10TB

Data requirements for select 2008 INCITE applications at ALCF

[1] S. Klasky, personal correspondence, June 19, 2008.

7

8

Applications, Data Models, and I/O

  Applications have data models
appropriate to domain

–  Multidimensional typed arrays, images composed
of scan lines, variable length records

–  Headers, attributes on data

  I/O systems have very simple data
models

–  Tree-based hierarchy of containers
–  Some containers have streams of bytes (files)
–  Others hold collections of other containers

(directories or folders)

  Someone has to map from one to
the other!

Graphic from J. Tannahill, LLNL

Graphic from A. Siegel, ANL

Challenges in Application I/O

 Leveraging aggregate communication and I/O bandwidth
of clients
–  …but not overwhelming a resource limited I/O system with

uncoordinated accesses!
 Limiting number of files that must be managed

–  Also a performance issue
 Avoiding unnecessary post-processing
 Often application teams spend so much time on this that

they never get any further:
–  Interacting with storage through convenient abstractions
–  Storing in portable formats

 Parallel I/O software is available to address all of
these problems, when used appropriately.

9

I/O for Computational Science

 Additional I/O software provides improved performance and
usability over directly accessing the parallel file system. Reduces or
(ideally) eliminates need for optimization in application codes.

10

11

Parallel File System

 Manage storage hardware
–  Present single view
–  Stripe files for performance

 In the I/O software stack
–  Focus on concurrent, independent access
–  Publish an interface that middleware can use

effectively
•  Rich I/O language
•  Relaxed but sufficient semantics

Parallel File Systems

 Building block for HPC I/O systems
–  Present storage as a single, logical storage unit
–  Stripe files across disks and nodes for performance
–  Tolerate failures (in conjunction with other HW/SW)

 User interface is often POSIX file I/O interface, not very
good for HPC

12

An example parallel file system, with large astrophysics checkpoints distributed across multiple I/O
servers (IOS) while small bioinformatics files are each stored on a single IOS.

C C C C C

Comm. Network

PFS PFS PFS PFS PFS

IOS IOS IOS IOS

H01

/pfs

/astro

H03 /bio H06

H02
H05

H04

H01

/astro

/pfs

/bio

H02
H03
H04

H05 H06

chkpt32.nc

prot04.seq prot17.seq

13

Process 0 Process 0

Contiguous and Noncontiguous I/O

  Contiguous I/O moves data from a single memory block into a single file region
  Noncontiguous I/O has three forms:

–  Noncontiguous in memory, noncontiguous in file, or noncontiguous in both
  Structured data leads naturally to noncontiguous I/O (e.g. block decomposition)
  Describing noncontiguous accesses with a single operation passes more knowledge

to I/O system

Noncontiguous
in File

Noncontiguous
in Memory

Ghost cell
Stored element

…
Vars 0, 1, 2, 3, … 23

Extracting variables from a block and
skipping ghost cells will result in
noncontiguous I/O.

I/O Forwarding

 Newest layer in the stack
–  Present in some of the largest systems
–  Provides bridge between system and

storage in machines such as the
Blue Gene/P

 Allows for a point of aggregation, hiding true number of
clients from underlying file system

 Poor implementations can lead to unnecessary
serialization, hindering performance

14

15

I/O Middleware
  Match the programming model

(e.g. MPI)

  Facilitate concurrent access by
groups of processes
–  Collective I/O
–  Atomicity rules

  Expose a generic interface
–  Good building block for high-level libraries

  Efficiently map middleware operations into PFS ones
–  Leverage any rich PFS access constructs, such as:

•  Scalable file name resolution
•  Rich I/O descriptions

16

Independent and Collective I/O

  Independent I/O operations specify only what a single process will do
–  Independent I/O calls do not pass on relationships between I/O on other processes

  Many applications have phases of computation and I/O
–  During I/O phases, all processes read/write data
–  We can say they are collectively accessing storage

  Collective I/O is coordinated access to storage by a group of processes
–  Collective I/O functions are called by all processes participating in I/O
–  Allows I/O layers to know more about access as a whole, more opportunities for

optimization in lower software layers, better performance

P0 P1 P2 P3 P4 P5 P0 P1 P2 P3 P4 P5

Independent I/O Collective I/O

17

High Level Libraries

 Match storage abstraction
to domain
–  Multidimensional datasets
–  Typed variables
–  Attributes

 Provide self-describing, structured files
 Map to middleware interface

–  Encourage collective I/O
 Implement optimizations that middleware

cannot, such as
–  Caching attributes of variables
–  Chunking of datasets

I/O Hardware and Software on Blue Gene/P

18

What we’ve said so far…

 Application scientists have basic goals for interacting with
storage
–  Keep productivity high (meaningful interfaces)
–  Keep efficiency high (extracting high performance from hardware)

 Many solutions have been pursued by application teams,
with limited success
–  This is largely due to reliance on file system APIs, which are poorly

designed for computational science
 Parallel I/O teams have developed software to address

these goals
–  Provide meaningful interfaces with common abstractions
–  Interact with the file system in the most efficient way possible

19

Storage System Models

20

21

File Systems

 File systems have two key roles
–  Organizing and maintaining the file name space
–  Storing contents of files

 Local file systems are used by a single operating system
instance (client) with direct access to the disk
–  e.g. NTFS or ext3 on your laptop drive

 Networked file systems provide access to one or more
clients who might not have direct access to the disk
–  e.g. NFS, AFS, etc.
–  Parallel file systems (PFSes) are a special kind of networked file

system written to provide high-performance I/O when multiple
clients share file system resources (files)

Parallel File System Design Issues

 Have to solve same problems as local
filesystem, at scale
–  Block allocation
–  Metadata management
–  Data reliability and error correction

 Additional requirements
–  Cache coherency
–  High availability
–  Scalable capacity & performance

22

Network Attached Storage (NAS)

 File server exports local filesystem
using a file-oriented protocol
–  NFS & CIFS are widely deployed
–  HTTP/WebDAV? FTP?

 Scalability limited by server hardware
–  Uses same building blocks (CPU, RAM,

I/O and memory buses) as clients
–  Handles moderate number of clients
–  Handles moderate amount of storage

 A nice model until it runs out of
steam
–  “Islands of storage”
–  Bandwidth to a file limited by server

bottleneck

23

NAS
Head

Clustered NAS

 More scalable than single-headed NAS
–  Multiple NAS heads control back-end

storage
–  “In-band” NAS head still limits performance

and drives up cost
 Two primary architectures

–  Private storage, forward requests to owner
(pictured)

–  Re-export SAN file system via NAS protocol
 NFS shortcomings for HPC

–  No good mechanism for dynamic load
balancing

–  Poor coherency (or no client caching)
–  No parallel access to data (until pNFS)

  Isilon, NetApp GX, BlueArc, AFS

24

NAS
Heads

SAN Shared Disk File Systems

  SAN provides common management
and provisioning for host storage

–  Block devices accessible via iSCSI/FC
–  Wire-speed performance potential

  Originally for local host FS
  Extended to create shared file system

–  Asymmetric (pictured): separate
metadata server manages blocks (and
sometimes inode operations)

–  Symmetric: all nodes share metadata &
block management

–  Reads & writes go direct to storage via
the SAN

  NAS access can be provided by “file
head” client node(s) that re-export the
SAN file system via NAS protocol

  IBM GPFS, Sun QFS, SGI CXFS

SAN

Metadata
server

cluster
network

25

Object-based Storage Clusters

 Object Storage Devices
–  High-level interface (inode/file-like)
–  Block management inside the

device
–  Some variants include security
–  OSD standard (SCSI T10)

 File system layered over objects
–  Metadata server manages

namespace and external security
–  OSD manages block allocation and

internal security
–  Out-of-band data transfer directly

between OSDs and clients
 High performance through

clustering
–  Scalable to thousands of clients
–  55+ GB/sec demonstrated to

single filesystem

Metadata
server(s)

Object storage devices
(OSDs)

26

Object Storage Architecture

 Raises storage’s level of abstraction
–  From logical blocks to objects (object is a container for data and

attributes)
–  Allows storage to understand how different blocks of a object are

related
–  Provides storage with necessary info to optimize storage resources

 An evolutionary improvement to standard (SCSI) storage
interface

Block Based Disk Object Based Disk

Source: Intel

Operations:
 Create object

 Delete object
 Read object
 Write object
 Get Attribute
 Set Attribute

Addressing:
 [object, byte range]

Allocation:
 Internal

Operations:
 Read block

 Write block

Addressing:
 Block range

Allocation:
 External

27

Wide Variety of Object Storage Devices

◼ Panasas StorageBlade

◼ 2 SATA disks, CPU and GE NIC

◼ Disk array subsystem

◼ Lustre, PVFS

◼ Prototype Seagate OSD

◼ Highly integrated, single disk

28

T10 OSD Security Model

  All operations are secured by a
capability

–  Is the command valid?
–  Is the command allowed to access

the specified object ?
  Manager and OSD are trusted
  Security achieved by:

–  Manager – authenticates/
authorizes clients and generates
credentials.

–  OSD – validates credential that a
client presents.

  Credential is signed
–  OSD and Manager share a secret

  POLICY ACCESS TAG attribute
allows fine-grained access
revocation

Client

Object
Store

Security
Manager

Shared Secret,
refreshed periodically

Authorization Req

Capability,
CAP_key Req,

Capability,
MACcap_key(Req)

29

Object Storage Standardization

  Started with NSIC NASD research 1995-1999
–  HP, IBM, Quantum, STK, Seagate, and CMU
–  Eventually became SNIA Technology working group in ‘99

•  45 participating companies
  1999 moves to SNIA/T10 working group
  1/2005: ANSI ratifies V1 T10 OSD standard (ANSI/INCITS

400-2004)
–  SNIA TWG finalizing OSD V2 features (target mid ‘08)

•  Snapshots, import/export, multi-object capabilities and
extended attributes

CMU NASD Lustre

NSIC NASD SNIA/T10 OSD OSD V1
Standard

Panasas

1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006
2007 2008

IBM / Seagate / Emulex
OSD V1
Prototype

OSD V2

30

Strengths of Object Storage

 Object maintains data relationship within OSD
–  Decisions on data layout can be optimized based on object size and

usage
–  OSD can be self-organizing, self-optimizing

  Extensible attributes
–  Built-in: size, timestamps, etc.
–  Filesystem defined: owner, ACLs, etc.
–  Application defined: HSM tags, content metadata, etc.

  Access credentials are signed, cached at clients, enforced at device
–  Clients can be untrusted (bugs & attacks expose only authorized object

data)
–  Protocol encodes security decisions, not policy

  Command set works with SCSI architecture model (SAM)
–  Encourages cost-effective implementation by storage device vendors
–  Protocol designed with embedded system restrictions in mind

31

Parallel File Systems

32

Disk Access Rates over Time

Thanks to R. Freitas of IBM Almaden Research Center for providing much of the data for this graph.

33

Blue Gene/P Parallel Storage System

34

Snapshot of Performance on Blue Gene/P

35

Maximum I/O rate of
300 Mbytes/sec per
I/O forwarding node
limits performance in
this region.

Effective BW out of
storage racks limits
performance in this
region (writing to
/dev/null achieves
around 65 Gbytes/sec).

We believe this drop
is due to a disk going
bad in a storage rack;
waiting on repeat
testing to confirm.

Low stat performance
relative to create may
be due to poor choice
of server-side cache
size (256 Kbytes)?

Lang et. al, “I/O Performance Challenges at Leadership Scale”, to appear in SC09, November 2009.

Parallel File Systems

 Building block for HPC I/O systems
–  Present storage as a single, logical storage unit
–  Stripe files across disks and nodes for performance

–  Tolerate failures (in conjunction with other HW/SW)

An example parallel file system, with large astrophysics checkpoints distributed across multiple I/O
servers (IOS) while small bioinformatics files are each stored on a single IOS.

C C C C C

Comm. Network

PFS PFS PFS PFS PFS

IOS IOS IOS IOS

H01

/pfs

/astro

H03 /bio H06

H02
H05

H04

H01

/astro

/pfs

/bio

H02
H03
H04

H05 H06

chkpt32.nc

prot04.seq prot17.seq

36

Data Distribution in Parallel File Systems

37

Locking in Parallel File Systems
Most parallel file systems use locks to manage
concurrent access to files
 Files are broken up into lock units
 Clients obtain locks on units that they will access

before
I/O occurs

 Enables caching on clients as well (as long as
client has a lock, it knows its cached data is valid)

 Locks are reclaimed from clients when others
desire access

38

If an access touches any
data in a lock unit, the
lock for that region must
be obtained before access
occurs.

Locking and Concurrent Access

39

Fault Tolerance and Parallel File
Systems
Combination of hardware and software ensures
continued operation in face of failures:

–  RAID techniques hide disk failures
–  Redundant controllers and shared access to storage
–  Heartbeat software and quorum directs server failover

40

Production Parallel File Systems

 All four systems scale to support the very largest
compute clusters
–  LLNL Purple, LANL RoadRunner, Sandia Red Storm, etc.

 All but GPFS delegate block management to
“object-like” data servers or OSDs

 Approaches to metadata vary
 Approaches to fault tolerance vary
 Emphasis on features, “turn-key” deployment, vary

GPFS

41

IBM GPFS

 General Parallel File System
 Legacy: IBM Tiger multimedia

filesystem
 Commercial product
 Lots of configuration flexibility

–  AIX, SP3, Linux
–  Direct storage, Virtual Shared

Disk, Network Shared Disk
–  Clustered NFS re-export

 Block interface to storage
nodes

 Distributed locking

42

GPFS: Block Allocation

  I/O server exports exports local disk via block-oriented NSD
protocol

  Block allocation map shared by all nodes
–  Block map split into N regions
–  Each region has 1/Nth of each I/O server’s blocks

 Writing node performs block allocation
–  Locks a region of the block map to find free blocks
–  Updates inode & indirect blocks
–  If # regions ~= # client nodes, block map sharing reduced or eliminated

  Stripe each block across multiple I/O servers (RAID-0) for
performance

  Large block size (1-4 MB) typically used
–  Increases transfer size per I/O server
–  Minimizes block allocation overhead
–  Not great for small files

43

GPFS: Metadata Management

 Symmetric model with distributed locking
 Each node acquires locks and updates metadata

structures itself
 Global token manager manages locking assignments

–  Client accessing a shared resource contacts token manager
–  Token manager gives token to client, or tells client current

holder of token
–  Token owner manages locking, etc. for that resource
–  Client acquires read/write lock from token owner before

accessing resource
 inode updates optimized for multiple writers

–  Shared write lock on inode
–  “Metanode token” for file controls which client writes inode to

disk
–  Other clients send inode updates to metanode, which merges

them

44

GPFS: Caching

 Clients cache reads and writes
 Strong coherency, based on distributed locking
 Client acquires R/W lock before accessing data
 Optimistic locking algorithm

–  First node accesses 0-1023, locks 0…EOF
–  Second node accesses 1024-2047

• First node reduces its lock to 0…1023
• Second node locks 1024…EOF

–  Lock splitting assumes client will continue accessing
in current pattern (forward or backward sequential)

 Client cache (“page pool”) pinned and separate
from OS page/buffer cache

45

GPFS: Reliability

 RAID underneath I/O server to handle disk failures &
sector errors

 Replication across I/O servers supported, but typically
only used for metadata

 I/O server failure handled via dual-attached RAID or
SAN
–  Backup I/O server takes over primary’s disks if it fails
–  Can designate up to 8 potential owners for a disk (serial failover)

 Nodes journal metadata updates before modifying FS
structures
–  Journal is per-node, so no sharing/locking issues
–  Journal kept in shared storage (i.e., on the I/O servers)
–  If node crashes, another node replays its journal to make FS

consistent
 Quorum/consensus protocol to determine set of “online”

nodes
–  Disk leases or SCSI-3 persistent reservations used for fencing

46

PVFS

 Parallel Virtual File System
–  Version 2

 Open source, Linux oriented

 Development led by Argonne
National Laboratory
–  Supported by many other institutions & companies

 Asymmetric architecture (data servers & clients)

 Data servers use object-like API

 Focused on needs of HPC applications
–  Interface optimized for MPI-IO semantics, not POSIX

47

PVFS: Block Allocation

 I/O server exports file/object oriented API
–  Storage object (“dataspace”) on an I/O server addressed

by numeric handle
–  Dataspace can be stream of bytes or key/value pairs
–  Create dataspace, delete dataspace, read/write

 Files & directories mapped onto dataspaces
–  File may be single dataspace, or chunked/striped over

several
 Each I/O server manages block allocation for its

local storage
 I/O server uses local filesystem (ext3, XFS, etc.) to

store dataspaces
 Key/value dataspace stored using Berkeley DB

table

48

PVFS: Metadata Management

 Directory dataspace contains list of names &
metafile handles

 Metafile dataspace contains
–  Attributes (permissions, owner, xattrs)
–  Distribution function parameters
–  Datafile handles

 Datafile(s) store file data
–  Distribution function determines pattern
–  Default is 64 KB chunk size and round-robin placement

 Directory and metadata updates are atomic
–  Eliminates need for locking
–  May require “losing” node in race to do significant cleanup

 System configuration (I/O server list, etc.) stored in
static file on all I/O servers

49

PVFS: Caching

 Client only caches immutable metadata and
read-only files

 All other I/O (reads, writes) go through to I/O
node

 Strong coherency (writes are immediately visible
to other nodes)

 Flows from PVFS2 design choices
–  No locking
–  No cache coherency protocol

 I/O server can cache data & metadata for local
dataspaces

 All prefetching must happen on I/O server
 Reads & writes limited by client’s interconnect

50

PVFS: Reliability

 Similar to GPFS
–  RAID underneath I/O server to handle disk failures &

sector errors
–  Dual attached RAID to primary/backup I/O server to

handle I/O server failures
 Linux HA used for generic failover support

–  Remote control power strip (STONITH) for fencing
 Sequenced operations provide well-defined crash

behavior
–  Example: Creating a new file

• Create datafiles
• Create metafile that points to datafiles
•  Link metafile into directory (atomic)

–  Crash can result in orphans, but no other inconsistencies

51

Panasas ActiveScale (PanFS)
 Commercial product based on CMU NASD research
 Complete “appliance” solution (HW + SW), blade server

form factor
–  DirectorBlade = metadata server
–  StorageBlade = OSD

 Coarse grained metadata
clustering

 Linux native client for
parallel I/O

 NFS & CIFS re-export
 Integrated battery/UPS
 Integrated 10GE switch
 Global namespace

52

iSCSI/OSD

OSDFS
Storage
Blade
1000+

SysMgr
PanFS

NFS/CIFS

Client

DirectorBlade
100+

Client

Compute Nodes

RPC

10,000+

52

PanFS: Block Allocation

 OSD exports object-oriented API
–  Objects have a number (object ID), data, and attributes
–  CREATE OBJECT, REMOVE OBJECT, READ, WRITE, GET

ATTRIBUTE, SET ATTRIBUTE, etc.
–  Commands address object ID and data range in object
–  Capabilities provide fine-grained revocable access control

 OSD manages private local storage
–  Two SATA drives, 500/750/1000 GB each, 1-2 TB total capacity

 Specialized filesystem (OSDFS) stores objects
–  Delayed floating block allocation
–  Efficient copy-on-write support

 Files and directories stored as “virtual objects”
–  Virtual object striped across multiple container objects on

multiple OSDs

53

PanFS: Metadata Management

 Directory is a list of names & object IDs in a RAID-1
virtual object

 Filesystem metadata stored as object attributes
–  Owner, ACL, timestamps, etc.
–  Layout map describing RAID type & OSDs that hold the

file
 Metadata server (DirectorBlade)

–  Checks client permissions & provides map/capabilities
–  Performs namespace updates & directory modifications
–  Performs most metadata updates

 Client modifies some metadata directly (length,
timestamps)

 Coarse-grained metadata clustering based on
directory hierarchy

54

PanFS: Caching

 Clients cache reads & writes
 Strong coherency, based on callbacks

–  Client registers callback with metadata server
–  Callback type identifies sharing state (unshared, read-

only, read-write)
–  Server notifies client when file or sharing state changes

 Sharing state determines caching allowed
–  Unshared: client can cache reads & writes
–  Read-only shared: client can cache reads
–  Read-write shared: no client caching
–  Specialized “concurrent write” mode for cooperating apps

(e.g. MPI-IO)
 Client cache shared with OS page/buffer cache

55

PanFS: Reliability

 RAID-1 & RAID-5 across OSDs to handle disk failures
–  Any failure in StorageBlade (disk, RAM, CPU) is handled via

rebuild
–  Declustered parity allows scalable rebuild

 “Vertical parity” inside OSD to handle sector errors
 Integrated shelf battery makes all RAM in blades into

NVRAM
–  Metadata server journals updates to in-memory log

•  Failover config replicates log to 2nd blade’s memory
•  Log contents saved to DirectorBlade’s local disk on panic or power

failure
–  OSDFS commits updates (data+metadata) to in-memory log

•  Log contents committed to filesystem on panic or power failure
•  Disk writes well ordered to maintain consistency

 System configuration in replicated database on subset of
DirectorBlades

56

H
 G

 k E

PanFS: Declustered RAID

  Each file striped across different combination of StorageBlades
  Component objects include file data and file parity
  File attributes replicated on first two component objects
  Components grow & new components created as data written
  Declustered, randomized placement distributes RAID workload

C
 F E

20 OSD
Storage Pool

Mirrored
or 9-OSD
Parity
Stripes

Read
about
half of
each
surviving
OSD

Write a
little
to each
OSD

Scales up
in larger
Storage
Pools

57

Panasas Scalable Rebuild

  Shorter repair time in larger storage
pools
–  From 13 hours to 30 minutes

  Four techniques to reduce MTTR
–  Use multiple “RAID

engines” (DirectorBlades) in
parallel

–  Spread disk I/O over more disk
arms (StorageBlades)

–  Reconstruct data blocks only, not
unused space

–  Proactively remove failing blades
(SMART trips, other heuristics)

  Two main causes of RAID failures
1)   2nd drive failure in same RAID set during reconstruction of 1st failed drive

•  Risk of two failures depends on time-to-repair
2) Media failure in same RAID set during reconstruction of 1st failed drive

MB/sec Rebuild

58

Lustre

 Open source object-based parallel
file system
–  Based on CMU NASD architecture
–  Lots of file system ideas from Coda

and InterMezzo
–  ClusterFS acquired by Sun, 9/2007

 Originally Linux-based, Sun now
porting to Solaris

  Asymmetric design with separate
metadata server

  Proprietary RPC network protocol
between client & MDS/OSS

  Distributed locking with client-driven
lock recovery

MDS 2
(standby)

Lustre Object Storage
Servers (OSS, 100’s)

Metadata
Servers

Failover

MDS 1
(active)

Commodity
SAN or disks

Enterprise class
Raid storage

Failover

QSW Elan

Myrinet

IB

GigE

OSS1

OSS2

OSS3

OSS4

OSS5

OSS6

OSS7

Multiple storage
networks are supported

Lustre material from www.lustre.org and various talks

59

Lustre: Block Allocation

 Each OSS (object storage server) manages one or more
OSTs (object storage target)
–  Typically 2-25 OSTs per OSS (max OST size 8 TB)
–  Client communicates with OSS via proprietary RPC protocol

•  RPC built on LNET message-passing facility (based on Sandia
Portals)
•  LNET supports RDMA over IB, Myrinet, and Quadrics Elan

 OST stores data in modified ext3 file system
 Currently porting OST to ZFS

–  User-level ZFS via FUSE on Linux
–  In-kernel ZFS on Solaris

 RAID-0 striping across OSTs
–  No dynamic space management among OSTs (i.e., no object

migration to balance capacity)
 Snapshots and quota done independently in each OST

60

Lustre: Metadata

 Metadata server (MDS) hosts metadata target (MDT),
which stores namespace tree and file metadata

 MDT uses a modified ext3 filesystem to store Lustre
metadata
–  Directory tree of “stub” files that represents Lustre namespace
–  Lustre metadata stored in stub file’s extended attributes

•  Regular filesystem attributes (owner, group, permissions, size, etc.)
•  List of object/OST pairs that contain file’s data (storage map)

–  Single MDS and single MDT per Lustre filesystem
–  Clustered MDS with multiple MDTs is on roadmap (Lustre 2.0)

 Distributed lock protocol among MDS, OSS, and clients
–  “Intents” convey hints about the high-level file operations so the

right locks can be taken and server round-trips avoided
–  If a failure occurs (MDS or OSS), clients do lock recovery after

failover

61

Lustre: Caching

  Clients can cache reads, writes, and some metadata operations
  Locking protocol used to protect cached data and serialize access

–  OSS manages locks for objects on its OSTs
–  MDS manages locks on directories & inodes
–  Client caches locks and can reuse them across multiple I/Os
–  MDS/OSS recalls locks when conflict occurs
–  Lock on logical file range may span several objects/OSTs if file is

striped
  Directory locks allow client to do CREATE without round-trip to

MDS
–  Only for unshared directory
–  Create not “durable” until file is written & closed
–  Non-POSIX semantic but helpful for many applications

  Client cache shared with OS page/buffer cache

62

Lustre: Reliability

  Block-based RAID underneath OST/MDT
  Failover managed by external software (Red Hat Cluster Manager,

Linux-HA, etc.)
 OSS failover (active/active or clustered)

–  OSTs on dual-ported RAID controller
–  OSTs on SAN with connectivity to all OSS nodes

 MDS failover (active/passive)
–  MDT on dual-ported RAID controller
–  Typically use dedicated RAID for MDT due to different workload

  Crash recovery based on logs and transactions
–  MDS logs operation (e.g., file delete)
–  Later response from OSS cancels log entry
–  Some client crashes cause MDS log rollback
–  MDT & OST use journaling filesystem to avoid fsck

  LNET supports redundant networks and link failover

63

Design Comparison

GPFS PVFS Panasas Lustre
Block mgmt Shared

block map
Object based Object based Object based

Metadata
location

With data With data With data Separate

Metadata
written by

Client Client Client, server Server

Cache
coherency &
protocol

Coherent;
distributed
locking

Cache
immutable/
RO data only

Coherent;
callbacks

Coherent;
distributed
locking

Reliability Block RAID Block RAID Object RAID Block RAID

64

Other File Systems

 GFS (Google)
–  Single metadata server + 100s of chunk servers
–  Specialized semantics (not POSIX)

• Relaxed consistency, no concurrent writes
•  Atomic append operation
• Copy-on-write snapshots

–  Design for failures; all files replicated 3+ times
–  Geared towards colocated processing (MapReduce)

 Ceph (UCSC)
–  OSD-based parallel filesystem
–  Dynamic metadata partitioning between MDSs
–  OSD-directed replication based on CRUSH distribution

function (no explicit storage map)
 Clustered NAS

–  NetApp GX, Isilon, BlueArc, etc.

65

Other Issues

 Reading and writing data is the easy part!
 What about…

–  Monitoring & troubleshooting?
–  Backups?
–  Snapshots?
–  Disaster recovery & replication?
–  Capacity management?

• Quotas, HSM, ILM
–  System expansion?
–  Retiring old equipment?

66

Themes

 Scalable clusters require scalable storage
–  Centralized/single anything eventually becomes a

bottleneck
 File/object oriented storage API is superior to

block oriented
–  Parallel, scalable block allocation
–  Block protocols have poor security & fencing support
–  Block layouts are cumbersome

 Reliability is important
–  Large systems will constantly have something that’s

broken
–  Tolerating failures is necessary to make forward

progress

67

Benchmarking and
Application Performance

68

Performance Measurement

 Lots of different performance metrics
–  Sequential bandwidth, random I/Os, metadata operations
–  Single-threaded vs. multi-threaded
–  Single-client vs. multi-client
–  N-to-N (file per process) vs. N-to-1 (single shared file)

 Ultimately a method to try to estimate what you
really care about
–  “Time to results”, aka “How long does my app take?”

 Benchmarks are best if they model your real
application
–  Need to know what kind of I/O your app does in order to

choose appropriate benchmark
–  Similar to CPU benchmarking – e.g., LINPACK

performance may not predict how fast your codes run

69

What is a benchmark?

 Standardized way to compare performance of
different systems

 Properties of a good benchmark
–  Relevant: captures essential attributes of real

application workload
–  Simple: Provides an understandable metric
–  Portable & scalable
–  Consistent & repeatable results (on same HW)
–  Accepted by users & vendors

 Types of benchmark
–  Microbenchmark
–  Application-based benchmark
–  Synthetic workload

70

Microbenchmarks

 Measures one fundamental operation in isolation
–  Read throughput, write throughput, creates/sec, etc.

 Good for:
–  Tuning a specific operation
–  Post-install system validation
–  Publishing a big number in a press release

  Not as good for:
–  Modeling & predicting application performance
–  Measuring broad system performance characteristics

  Examples:
–  IOzone
–  IOR
–  Bonnie++
–  mdtest
–  metarates

71

Application Benchmarks

 Run real application on real data set, measure time
 Best predictor of application performance on your cluster
 Requires additional resources (compute nodes, etc.)

–  Difficult to acquire when evaluating new gear
–  Vendor may not have same resources as their customers

 Can be hard to isolate I/O vs. other parts of application
–  Performance may depend on compute node speed, memory

size, interconnect, etc.
–  Difficult to compare runs on different clusters

 Time consuming – realistic job may run for days, weeks
 May require large or proprietary dataset

–  Hard to standardize and distribute

72

Synthetic Benchmarks

 Selected combination of operations (usually a fractional
mix)
–  Operations selected at random or using random model (e.g.,

Hidden Markov Model)
–  Operations and mix based on traces or sampling real workload

 Can provide better model for application performance
–  However, inherently domain-specific
–  Need different mixes for different applications & workloads
–  The more generic the benchmark, the less useful it is for

predicting app performance
–  Difficult to model a combination of applications

 Examples:
–  SPEC SFS
–  TPC-C, TPC-D

73

Benchmarks for HPC

  Unfortunately, there are few synthetic HPC benchmarks that stress I/O
  HPC Challenge (http://icl.cs.utk.edu/hpcc/)

–  Seven sub-benchmarks, all “kernel” benchmarks (LINPACK, matrix transpose, FFT,
message ping-pong, etc.)

–  Measures compute speed, memory bandwidth, cluster interconnect
–  No I/O measurements

  SPEC HPC2002 (http://www.spec.org/hpc2002/)
–  Three sub-benchmarks (CHEM, ENV, SEIS), all based on real apps
–  Only SEIS has a dataset of any size, and even it is tiny

•  2 GB for Medium, 93 GB for X-Large

  NAS Parallel Benchmarks (http://www.nas.nasa.gov/Resources/Software/npb.html)
–  Mix of kernel and mini-application benchmarks, all CFD-focused
–  One benchmark (BTIO) does significant I/O (135 GB N-to-1/collective write)

  FLASH I/O Benchmark (http://www-unix.mcs.anl.gov/pio-benchmark/)
–  Simulates I/O performed by FLASH (nuclear/astrophysics application, Net-CDF/HDF5)

  Most HPC I/O benchmarking still done with microbenchmarks
–  IOzone, IOR (LLNL), LANL MPI-IO Test, mdtest, etc.

74

Benchmarking Pitfalls

 Not measuring what you think you are measuring
–  Most common with microbenchmarks
–  For example, measuring write or read from cache rather than to

storage
–  Watch for “faster than the speed of light” results

 Multi-client benchmarks without synchronization across nodes
–  Measure aggregate throughput only when all nodes are transferring

data
–  Application with I/O barrier may care more about when last node

finishes

Node 1

Node 2

Node 3

Node 1

Node 2

Node 3

 Benchmark that does not model application workload
–  Different I/O size & pattern, different file size, etc.

75

Analyzing Results

 Sanity-checking results is important
 Figure out the “speed of light” in your system
 Large sequential accesses

–  Readahead can hide latency
–  7200 RPM SATA 60-100 MB/sec/spindle
–  15000 RPM FC 100-170 MB/sec/spindle

 Small random access
–  Seek + rotate limited
–  Readahead rarely helps (and sometimes hurts)
–  7200 RPM SATA avg access 15 ms, 75-100 ops/sec/spindle
–  15000 RPM FC avg access 6 ms, 150-200 ops/sec/spindle

76

Beware Hidden Bottlenecks

 “I added disks and I/O nodes but my apps aren’t
running any faster!”

 Common “hidden” bottleneck sources
–  Oversubscribed switch line cards or internal network

links
–  NAS head throughput (for in-band filesystems)
–  Cluster head node (for head-node based apps)
–  Cluster CPU or message interconnect (not all jobs

are I/O bound)

77

Head Node I/O

  Traditional storage architecture led to a “head node” app I/O
architecture
–  Head node has user logins and access to direct-attached or SAN

storage
–  Head node reads data set & transmits it to other nodes
–  Nodes send their results to head node which writes data file to storage
–  Scalability requires an ever faster head node and either a faster local

store or a faster (single) file server for the head node’s I/O load
–  Data management can be an issue as datasets are copied to/from the

cluster
  Head node processing steps are application bottlenecks

Head node

78

Parallel I/O

  Restructure app to perform I/O in parallel from each compute node
–  Eliminates head node I/O bottleneck
–  Cluster lets you do computation in parallel
–  Without parallel I/O, I/O time dominates as compute time shrinks (bigger/

faster cluster)
  Challenges

–  Requires direct access to storage from all cluster nodes (hard with SAN FS)
–  Easiest way to convert application retains existing file structure (single file

for results from all nodes)
–  However, multiple nodes writing to shared file requires coordination
–  Changing application I/O pattern requires source code – hard for COTS

apps unless vendor supports both modes
  POSIX API does not provide tools necessary for coordinating I/O

–  Filesystem that provides strict POSIX consistency will sacrifice performance
–  Relaxing semantics can improve performance, but may break applications
–  No standard mechanisms for disclosing caching hints, etc.

79

Example Parallel I/O Performance Gain
Ti

m
e

(m
in

)

7 hours
17 mins

Av. Read
BW

300MB/s

5 hours
16 mins

Av. Read
BW

350MB/s

2 hours
51 mins

Av. Read
BW

650MB/s

4 Shelves 4 Shelves 1 Shelf
Source: Paradigm & Panasas, February 2007

Paradigm GeoDepth Prestack Migration

81

PVFS Test Platform: OSC Opteron Cluster

 338 nodes, each with
–  4 AMD Opteron CPUs at 2.6 GHz, 8 GB memory

 Gigabit Ethernet network
–  Switch Hierarchy with multiple GBit uplinks

 16 I/O servers (also serving metadata)
–  2 2-core Xeon CPU at 2.4 GHz, 3 GB memory

 120 TB parallel file system
–  Each server has Fibre Channel interconnect to back-

end RAID

Panasas Test Lab
  Hundreds of storage nodes and clients in our lab but of various

vintage and for various other tests. We created a small system for
these tests:

 3 Panasas Shelves, each with
–  10 SB-1000a-XC StorageBlades

•  (1.5GHz Celeron, 2GB, 1TB SATA, 1GE)
–  1 DB-100a DirectorBlade

•  (1.8GHz 475, 4GB, 1GE)
–  18-port switch with 10GE uplink

 48 client nodes
–  2.8 GHz Xeon, 8GB, 1GE

 GE Backbone
–  4 GB/sec between

clients and shelves

82

GPFS Test Platform: ASC Purple

 1536 nodes, each with
–  8 64-bit Power5 CPUs at

1.9 GHz
–  32 GB memory

 Federation high-speed interconnect
–  4Gbyte/sec theoretical bisection

bandwidth per adapter
–  ~5.5 Gbyte/sec measured per I/O server w/dual adapters

 125 I/O servers, 3 metadata servers
–  8 64-bit Power5 CPUs at 1.9 GHz
–  32 GB memory

 300 TB parallel file system
–  HW RAID5 (4+P, 250 GB SATA Drives)
–  24 RAIDs per I/O server

83

84

Lustre Test Platform: LLNL Thunder

 1024 nodes each with
–  4 64-bit Itanium2 CPUs at 1.4 GHz
–  8 GB memory

 Quadrics high-speed interconnect
–  ~900 MB/s of bidirectional bandwidth
–  16 Gateway nodes with 4 GigE connections to the

Lustre network
 64 object storage servers, 1 metadata server

–  I/O server - dual 2.4 Ghz Xeons, 2GBs ram
–  Metadata Server - dual 3.2 Ghz Xeons, 4 GBs ram

 170 TB parallel file system
–  HW RAID5 (8+P, 250 GB SATA Drives)
–  108 RAIDs per rack
–  8 racks of data disk

Metadata Performance

 Storage is more than reading & writing
 Metadata operations change the namespace or file

attributes
–  Creating, opening, closing, and removing files
–  Creating, traversing, and removing directories
–  “Stat”ing files (obtaining the attributes of the file, such as

permissions and file size)
 Several users exercise metadata subsystems:

–  Interactive use (e.g. “ls -l”)
–  File-per-process POSIX workloads
–  Collectively accessing files through MPI-IO (directly or indirectly)

85

mdtest: Parallel Metadata Performance
 Measures performance of multiple tasks creating, stating, and

deleting both files and directories in either a shared directory or
unique (per task) directories

  Demonstrates potential serialization of multiple, uncoordinated
processes for directory access

 Written at Lawrence Livermore National Laboratory
 MPI code, processes synchronize for timing purposes
 We ran three variations, each with 64 processes:

–  mdtest -d $DIR -n 100 -i 3 -N 1 -v -u
•  Each task creates 100 files in a unique subdirectory

–  mdtest -d $DIR -n 100 -i 3 -N 1 -v -c
•  One task creates 6400 files in one directory
•  Each task opens, removes its own

–  mdtest -d $DIR -n 100 -i 3 -N 1 -v
•  Each task creates 100 files in a single shared directory

 GPFS tests use 16 tasks with 4 tasks on each node
  Panasas tests use 48 tasks on 48 nodes

86

87

mdtest Variations

root dir

Shared Directory

A B C

a0
a99

a1 b0
b99

b1 c0
c99

c1

1)  Each process (A,
B, C) creates,
stats, and removes
its own files in the
root directory.

A B C

root dir
subdir0
a0

a99
a1 b0

b99
b1 c0

c99
c1

subdir0 subdir0

Unique Directory

1)  Each process (A, B,
C) creates own
subdir in root
directory, then
chdirs into it.

2)  A, B, and C create,
stat, and remove
their own files in the
unique
subdirectories.

A B C

root dir

a0
a99

a1 b0
b99

b1 c0
c99

c1

Single Process

1)  Process A creates
files for all
processes in root
directory.

2)  Processes A, B,
and C open, stat,
and close their own
files.

3)  Process A removes
files for all
processes.

mdtest Results

88

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Create
File

Stat File Remove
File

Create Dir Stat Dir Remove
Dir

O
pe

ra
tio

ns
/S

ec
on

d

Panasas mdtest Performance

Unique Directory
Single Process
Shared Directory

mdtest Analysis

 PVFS
–  No penalty if all processes operate on own files
–  Like fdtree, lack of client caching hurts stat

 GPFS: Very high cost to operating in the same
directory
–  Each client must acquire token & modify dir itself

 Lustre has distributed directories, and as a
result has a lower penalty for using shared
directory

 Panasas coarse-grained metadata clustering not
active here, since all procs share common root

89

90

mpi-md-test: MPI-IO Metadata Operations

 Written at Argonne National Laboratory
 MPI code that measures performance of several collective MPI-IO

metadata routines
–  Create: each process collectively calls MPI_File_open to create N

files
•  mpi-md-test -O -d ./x -n 1000

–  Open: each process collectively calls MPI_File_open on N pre-
existing files
•  mpi-md-test -O -d ./x -n 1000 (after prior create run)

–  Resize: each process collectively calls MPI_File_set_size on one
file
•  mpi-md-test -R -d ./x -n 100

  Collective routines: potential for optimization
–  Perform on one process, broadcast result to others

  Allows us to see performance for coordinated metadata
operations
–  How performance scales with number processes

  64x2, 64x4 for large runs with Lustre, 16x4, 32x4, 32x8 for large
GPFS runs

mpi-md-test Results

 Scalable algorithms in PVFS
result in performance as
good as MPI collectives

 Lustre numbers hampered by
MPI resize impl. (resize on all
nodes)

91

The POSIX I/O Interface

92

POSIX I/O Introduction

 POSIX is the IEEE Portable Operating System Interface
for Computing Environments

 “POSIX defines a standard way for an application
program to obtain basic services from the operating
system”
–  Mechanism almost all serial applications use to perform I/O

 POSIX was created when a single computer owned its
own file system
–  No ability to describe collective I/O accesses
–  It can be very expensive for a file system to guarantee POSIX

semantics for heavily shared files (e.g., from clusters)
–  Network file systems like NFS chose not to implement strict

POSIX semantics in all cases (e.g., lazy access time
propagation)

 Presenting this interface primarily so that we can
compare and contrast with other interfaces

93

Under the Covers of POSIX

  POSIX API is a bridge between many tools and the file systems
below

 Operating system maps these calls directly into file system
operations

  File system performs I/O, using block- or region-oriented
accesses depending on implementation

  “Compliant” file systems will likely perform locking to guarantee
atomicity of operations
–  Can incur substantial overhead
–  Seen in this Lustre H5perf graph,

optimizations to speed serial
I/O performance can result in
substantial overhead when
more than one process wants
to access the same file

94

IOR: File System Bandwidth

 Written at Lawrence Livermore National Laboratory
 Named for the acronym ‘interleaved or random’
 POSIX, MPI-IO, HDF5, and Parallel-NetCDF APIs

–  Shared or independent file access
–  Collective or independent I/O (when available)

 Employs MPI for process synchronization
 Used here to obtain peak POSIX I/O rates for shared

and separate files
–  Running in segmented (contiguous) I/O mode
–  We ran two variations:

•  ./IOR -a POSIX -C -i 3 -t 4M -b 4G -e -v -v -o $FILE
–  Single, shared file

•  ./IOR -a POSIX -C -i 3 -t 4M -b 4G -e -v -v -F -o $FILE
–  One file per process

95

IOR Access Patterns for Shared Files

 Primary distinction between the two major shared-file patterns
is whether each task’s data is contiguous or noncontiguous

 For the segmented pattern, each task stores its blocks of data
in a contiguous region in the file

 With the strided access pattern, each task’s data blocks are
spread out through a file and are noncontiguous

 We only show segmented access pattern results

96

A B C

memory buffer

b b b b b b b

memory buffer memory buffer

a a a a a a a c c c c c c c

b a c b a c b a c b a c b a c b a c b a c

 - or -
Segmented File

Strided File

IOR POSIX Segmented Results

97

0

200

400

600

800

1000

1 2 4 8 16 32

A
gg

re
ga

te
 B

W
 (M

B
/s

ec
)

of Processes

Panasas IOR Segmented IO Performance

Shared File Read
Separate File Read
Shared File Write
Separate File Write

IOR POSIX Segmented Analysis

 Aggregate performance increases to a point as
more clients are added
–  Striping and multiple network links

 Expect to see a peak and flatten out after that
peak

 Sometimes early spikes appear due to cache
effects (not seen here)

 Incast hurts PVFS reads
 Panasas shared file 25-40% slower than

separate file
–  IOR not using Panasas lazy coherency extensions

98

POSIX I/O High Performance
Computing Extensions

99

APIs for HPC IO

 POSIX IO APIs (open, close, read, write, stat) have
semantics that can make it hard to achieve high
performance when large clusters of machines
access shared storage.

 A working group (see next slide) of HPC users has
drafted API additions for POSIX that will provide
standard ways to achieve higher performance.
–  HECEWG: High End Computing Extensions Working

Group
 Primary approach is either to relax semantics that

can be expensive, or to provide more information to
inform the storage system about access patterns.

100

Contributors

 Lee Ward - Sandia National Lab
 Bill Lowe, Tyce McLarty – Lawrence Livermore National

Lab
 Gary Grider, James Nunez – Los Alamos National Lab
 Rob Ross, Rajeev Thakur, William Gropp - Argonne

National Lab
 Roger Haskin – IBM
 Brent Welch, Marc Unangst - Panasas
 Garth Gibson- CMU/Panasas
 Alok Choudhary – Northwestern U
 Tom Ruwart- U of Minnesota/IO Performance
 Many Others…
 http://www.opengroup.org/platform/hecewg/

101

HPC POSIX Enhancement Areas

 Metadata
–  optional attributes, bulk attributes
–  statlite(), readdirplus(), readdirlite()

 Coherence
–  last writer wins and other such things can be optional
–  lazyio_propogate(), lazyio_synchronize()

 Shared file descriptors
–  file opens for cooperating groups of processes
–  openg(), openfh()

 Ordering
–  stream of bytes idea needs to move towards

distributed vectors of units
–  readx(), writex()

102

POSIX HPC IO

 statlite, fstatlite
–  optional attributes

 readdirplus, readdirlite
–  expose NFS bulk attribute op to applications

 lazyio_propogate, lazyio_synchronize,
O_LAZY
–  Hint to buffer cache management

 openg, openfh
–  expose file handles to applications

 readx, writex
–  memory vector to/from file vector

 http://www.opengroup.org/platform/hecewg/

103

POSIX Wrap-Up

  POSIX interface is a useful, ubiquitous interface for basic I/O
  Lacks any constructs useful for parallel I/O
  Should not be used in parallel applications if performance is desired
  However, work is ongoing to improve the POSIX I/O interface!

–  A working group of HEC users is drafting some proposed API additions
for POSIX that will provide standard ways to achieve higher
performance

–  Two general approaches
•  Relax semantics that can be

expensive
•  Better inform the storage system

about access patterns

104

Data from Ruth Klundt (SNL), using Darkstar cluster.

◼ Providing a substitute for the POSIX
open() call allows us to avoid name space
operations on many nodes, resulting in
much faster open operations when many
clients will access the same file.

The MPI-IO Interface

105

106

MPI-IO

 I/O interface specification for use in MPI apps
 Data model is same as POSIX

–  Stream of bytes in a file
 Features:

–  Collective I/O
–  Noncontiguous I/O with MPI datatypes and file views
–  Nonblocking I/O
–  Fortran bindings (and additional languages)
–  System for encoding files in a portable format

(external32)
• Not self-describing - just a well-defined encoding of types

 Implementations available on most platforms
(more later)

107

Independent and Collective I/O

  Independent I/O operations specify only what a single process will do
–  Independent I/O calls do not pass on relationships between I/O on other processes

  Many applications have phases of computation and I/O
–  During I/O phases, all processes read/write data
–  We can say they are collectively accessing storage

  Collective I/O is coordinated access to storage by a group of processes
–  Collective I/O functions are called by all processes participating in I/O
–  Allows I/O layers to know more about access as a whole, more opportunities for

optimization in lower software layers, better performance

P0 P1 P2 P3 P4 P5 P0 P1 P2 P3 P4 P5

Independent I/O Collective I/O

108

Process 0 Process 0 Process 0 Process 0

Contiguous Noncontiguous
in File

Noncontiguous
in Memory

Noncontiguous
in Both

Contiguous and Noncontiguous I/O

  Contiguous I/O moves data from a single memory block into a single file region
  Noncontiguous I/O has three forms:

–  Noncontiguous in memory, noncontiguous in file, or noncontiguous in both
  Structured data leads naturally to noncontiguous I/O (e.g. block decomposition)
  Describing noncontiguous accesses with a single operation passes more

knowledge to I/O system

109

Nonblocking and Asynchronous I/O

 Blocking, or Synchronous, I/O operations return when
buffer may be reused
–  Data in system buffers or on disk

 Some applications like to overlap I/O and computation
–  Hiding writes, prefetching, pipelining

 A nonblocking interface allows for submitting I/O
operations and testing for completion later

 If the system also supports asynchronous I/O,
progress on operations can occur in the background
–  Depends on implementation

 Otherwise progress is made at start, test, wait calls

110

Example: Visualization Staging

  Often large frames must be preprocessed before display on a tiled
display

  First step in process is extracting “tiles” that will go to each projector
–  Perform scaling, etc.

  Parallel I/O can be used to speed up reading of tiles
–  One process reads each tile

  We’re assuming a raw RGB format with a fixed-length header

Tile 0

Tile 3

Tile 1

Tile 4 Tile 5

Tile 2

111

MPI Subarray Datatype

  MPI_Type_create_subarray can describe any N-dimensional
subarray of an N-dimensional array

  In this case we use it to pull out a 2-D tile
  Tiles can overlap if we need them to
  Separate MPI_File_set_view call uses this type to select the file

region

frame_size[1]

fra
m

e_
si

ze
[0

]

Tile 4

tile_start[1] tile_size[1]

tile_start[0] tile_size[0]

112

Opening the File, Defining RGB Type

MPI_Datatype rgb, filetype;

MPI_File filehandle;

ret = MPI_Comm_rank(MPI_COMM_WORLD, &myrank);

/* collectively open frame file */

ret = MPI_File_open(MPI_COMM_WORLD, filename,
MPI_MODE_RDONLY, MPI_INFO_NULL, &filehandle);

/* first define a simple, three-byte RGB type */

ret = MPI_Type_contiguous(3, MPI_BYTE, &rgb);

ret = MPI_Type_commit(&rgb);

/* continued on next slide */

113

Defining Tile Type Using Subarray

/* in C order, last array

 * value (X) changes most

 * quickly

 */

frame_size[1] = 3*1024;

frame_size[0] = 2*768;

tile_size[1] = 1024;

tile_size[0] = 768;

tile_start[1] = 1024 * (myrank % 3);

tile_start[0] = (myrank < 3) ? 0 : 768;

ret = MPI_Type_create_subarray(2, frame_size,
tile_size, tile_start, MPI_ORDER_C, rgb,
&filetype);

ret = MPI_Type_commit(&filetype);

frame_size[1]

fra
m

e_
si

ze
[0

]

Tile 4

tile_start[1] tile_size[1]

tile_start[0]
tile_size[0]

114

Reading Noncontiguous Data

/* set file view, skipping header */

ret = MPI_File_set_view(filehandle,
file_header_size, rgb, filetype, "native",
MPI_INFO_NULL);

/* collectively read data */

ret = MPI_File_read_all(filehandle, buffer,
tile_size[0] * tile_size[1], rgb, &status);

ret = MPI_File_close(&filehandle);

  MPI_File_set_view is the MPI-IO mechanism for describing
noncontiguous regions in a file
  In this case we use it to skip a header and read a subarray

  Using file views, rather than reading each individual piece, gives the
implementation more information to work with (more later)

  Likewise, using a collective I/O call (MPI_File_read_all) provides
additional information for optimization purposes (more later)

115

Under the Covers of MPI-IO

 MPI-IO implementation given a lot of information
in this example:
–  Collection of processes reading data
–  Structured description of the regions

 Implementation has some options for how to
perform the data reads
–  Noncontiguous data access optimizations
–  Collective I/O optimizations

Noncontiguous I/O: Data Sieving

  Data sieving is used to
combine lots of small
accesses into a single larger
one
–  Remote file systems (parallel or

not) tend to have high latencies
–  Reducing # of operations

important
  Similar to how a block-based

file system interacts with
storage

  Generally very effective, but
not as good as having a PFS
that supports noncontiguous
access

Buffer

Memory

File

Data Sieving Read Transfers

116

Data Sieving Write Operations

Buffer

Memory

File

Data Sieving Write Transfers

 Data sieving for writes is
more complicated
–  Must read the entire region

first
–  Then make changes in

buffer
–  Then write the block back

 Requires locking in the
file system
–  Can result in false sharing

(interleaved access)
 PFS supporting

noncontiguous writes is
preferred

117

118

Collective I/O and Two-Phase I/O

  Problems with independent, noncontiguous access
–  Lots of small accesses
–  Independent data sieving reads lots of extra data, can exhibit false sharing

  Idea: Reorganize access to match layout on disks
–  Single processes use data sieving to get data for many
–  Often reduces total I/O through sharing of common blocks

  Second “phase” redistributes data to final destinations
  Two-phase writes operate in reverse (redistribute then I/O)

–  Typically read/modify/write (like data sieving)
–  Overhead is lower than independent access because there is little or no false sharing

  Note that two-phase is usually applied to file regions, not to actual blocks

Two-Phase Read Algorithm

p0 p1 p2 p0 p1 p2 p0 p1 p2

Phase 1: I/O Initial State Phase 2: Redistribution

Two-Phase I/O Algorithms

119

For more information, see W.K. Liao and A. Choudhary, “Dynamically Adapting File Domain Partitioning Methods for Collective I/O Based on
Underlying Parallel File System Locking Protocols,” SC2008, November, 2008.

Impact of Two-Phase I/O Algorithms

 This graph shows the
performance for the S3D
combustion code, writing to a
single file.

 Aligning with lock boundaries
doubles performance over
default “even” algorithm.

 “Group” algorithm similar to
server-aligned algorithm on last
slide.

 Testing on Mercury, an IBM
IA64 system at NCSA, with 54
servers and 512KB stripe size.

120

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

8 16 32 64 128
256

512

W
ri

te
 B

a
n

d
w

id
th

 (
G

B
/s

)

Number of Processes

S3D I/O on GPFS

aligned
even

group

W.K. Liao and A. Choudhary, “Dynamically Adapting
File Domain Partitioning Methods for Collective
I/O Based on Underlying Parallel File System
Locking Protocols,” SC2008, November, 2008.

S3D Turbulent Combustion Code

  S3D is a turbulent combustion
application using a direct numerical
simulation solver from Sandia
National Laboratory

  Checkpoints consist of four global
arrays
–  2 3-dimensional
–  2 4-dimensional
–  50x50x50 fixed

subarrays

121

Thanks to Jackie Chen (SNL), Ray Grout (SNL), and Wei-Keng Liao (NWU) for providing the S3D I/O benchmark, Wei-Keng Liao
for providing this diagram.

Impact of Optimizations on S3D I/O
  Testing with PnetCDF output to single file, three configurations,

16 processes
–  All MPI-IO optimizations (collective buffering and data sieving) disabled
–  Independent I/O optimization (data sieving) enabled
–  Collective I/O optimization (collective buffering, a.k.a. two-phase I/O) enabled

122

Coll. Buffering
and Data Sieving
Disabled

Data Sieving
Enabled

Coll. Buffering
Enabled (incl.
Aggregation)

POSIX writes 102,401 81 5
POSIX reads 0 80 0
MPI-IO writes 64 64 64
Unaligned in file 102,399 80 4
Total written (MB) 6.25 87.11 6.25
Runtime (sec) 1443 11 6.0
Avg. MPI-IO time
per proc (sec)

1426.47 4.82 0.60

123

noncontig Benchmark

 Contributed by Joachim Worringen (formerly of
NEC)

 Constructs a datatype and performs
noncontiguous I/O in file
–  Struct of a vector of contigs
–  Option for both independent and collective access
–  Option to vary amount of data, how many pieces

 Far from ideal access pattern for many file
systems and MPI-IO implementations
–  Naïve approach: lots and lots of tiny file accesses
–  But lots of room for optimization, esp. in collective case

 Lets us explore how well the file system handles
increasingly poor access patterns

124

noncontig I/O Results
 This is one area where PVFS

shines
–  High fraction of block BW for

independent, noncontiguous I/O
 All file systems benefit from

collective I/O optimizations for all
but the most contiguous patterns
–  Collective I/O optimizations can be

absolutely critical to performance

125

Common Functionality
ADIO Interface

UFS

MPI-IO Interface

NFS XFS PVFS
ROMIO’s layered architecture.

MPI-IO Implementations

  Different MPI-IO implementations exist
  Three better-known ones are:

–  ROMIO from Argonne National Laboratory
•  Leverages MPI-1 communication
•  Supports local file systems, network file systems,

parallel file systems
–  UFS module works GPFS, Lustre, and others

•  Includes data sieving and two-phase optimizations
–  MPI-IO/GPFS from IBM (for AIX only)

•  Includes two special optimizations
–  Data shipping -- mechanism for coordinating access to a file to

alleviate lock contention (type of aggregation)
–  Controlled prefetching -- using MPI file views and access patterns

to predict regions to be accessed in future
–  MPI from NEC

•  For NEC SX platform and PC clusters with Myrinet, Quadrics, IB, or
TCP/IP
•  Includes listless I/O optimization -- fast handling of noncontiguous I/O

accesses in MPI layer

126

MPI-IO Wrap-Up

 MPI-IO provides a rich interface allowing us to
describe
–  Noncontiguous accesses in memory, file, or both
–  Collective I/O

 This allows implementations to perform many
transformations that result in better I/O
performance

 Also forms solid basis for high-level I/O libraries
–  But they must take advantage of these features!

The Parallel netCDF
Interface and File Format

Thanks to Wei-Keng Liao and Alok
Choudhary (NWU) for their help in
the development of PnetCDF.

127

128

Higher Level I/O Interfaces

 Provide structure to files
–  Well-defined, portable formats
–  Self-describing
–  Organization of data in file
–  Interfaces for discovering contents

 Present APIs more appropriate for computational
science
–  Typed data
–  Noncontiguous regions in memory and file
–  Multidimensional arrays and I/O on subsets of these

arrays
 Both of our example interfaces are implemented

on top of MPI-IO

129

Parallel netCDF (PnetCDF)

 Based on original “Network Common Data Format” (netCDF)
work from Unidata
–  Derived from their source code

 Data Model:
–  Collection of variables in single file
–  Typed, multidimensional array variables
–  Attributes on file and variables

 Features:
–  C and Fortran interfaces
–  Portable data format (identical to netCDF)
–  Noncontiguous I/O in memory using MPI datatypes
–  Noncontiguous I/O in file using sub-arrays
–  Collective I/O

 Unrelated to netCDF-4 work (More about netCDF-4 later)

Data Layout in netCDF Files

130

Record Variables in netCDF

 Record variables are defined to
have a single “unlimited”
dimension
–  Convenient when a dimension size

is unknown at time of variable
creation

 Record variables are stored
after all the other variables in an
interleaved format
–  Using more than one in a file is

likely to result in poor performance
due to number of noncontiguous
accesses

131

132

Storing Data in PnetCDF

 Create a dataset (file)
–  Puts dataset in define mode
–  Allows us to describe the contents

• Define dimensions for variables
• Define variables using dimensions
• Store attributes if desired (for variable or dataset)

 Switch from define mode to data mode to write
variables

 Store variable data
 Close the dataset

133

Example: FLASH Astrophysics

  FLASH is an astrophysics code
for
studying events such as
supernovae
–  Adaptive-mesh hydrodynamics
–  Scales to 1000s of processors
–  MPI for communication

  Frequently checkpoints:
–  Large blocks of typed variables

from all processes
–  Portable format
–  Canonical ordering (different than

in memory)
–  Skipping ghost cells

Ghost cell
Stored element

…
Vars 0, 1, 2, 3, … 23

134

Example: FLASH with PnetCDF

 FLASH AMR structures do not map directly to
netCDF multidimensional arrays

 Must create mapping of the in-memory FLASH
data structures into a representation in netCDF
multidimensional arrays

 Chose to
–  Place all checkpoint data in a single file
–  Impose a linear ordering on the AMR blocks

• Use 4D variables
–  Store each FLASH variable in its own netCDF variable

• Skip ghost cells
–  Record attributes describing run time, total blocks, etc.

135

Defining Dimensions

int status, ncid, dim_tot_blks, dim_nxb,
dim_nyb, dim_nzb;

MPI_Info hints;

/* create dataset (file) */

status = ncmpi_create(MPI_COMM_WORLD, filename,
NC_CLOBBER, hints, &file_id);

/* define dimensions */

status = ncmpi_def_dim(ncid, "dim_tot_blks",
tot_blks, &dim_tot_blks);

status = ncmpi_def_dim(ncid, "dim_nxb",
nzones_block[0], &dim_nxb);

status = ncmpi_def_dim(ncid, "dim_nyb",
nzones_block[1], &dim_nyb);

status = ncmpi_def_dim(ncid, "dim_nzb",
nzones_block[2], &dim_nzb);

Each dimension gets
a unique reference

136

Creating Variables

int dims = 4, dimids[4];

int varids[NVARS];

/* define variables (X changes most quickly) */

dimids[0] = dim_tot_blks;

dimids[1] = dim_nzb;

dimids[2] = dim_nyb;

dimids[3] = dim_nxb;
for (i=0; i < NVARS; i++) {

status = ncmpi_def_var(ncid, unk_label[i],
NC_DOUBLE, dims, dimids, &varids[i]);

}

Same dimensions used
for all variables

137

Storing Attributes

/* store attributes of checkpoint */

status = ncmpi_put_att_text(ncid, NC_GLOBAL,
"file_creation_time", string_size,
file_creation_time);

status = ncmpi_put_att_int(ncid, NC_GLOBAL,
"total_blocks", NC_INT, 1, tot_blks);

status = ncmpi_enddef(file_id);

/* now in data mode … */

138

Writing Variables

double *unknowns; /* unknowns[blk][nzb][nyb][nxb] */

size_t start_4d[4], count_4d[4];

start_4d[0] = global_offset; /* different for each process */

start_4d[1] = start_4d[2] = start_4d[3] = 0;

count_4d[0] = local_blocks;

count_4d[1] = nzb; count_4d[2] = nyb; count_4d[3] = nxb;

for (i=0; i < NVARS; i++) {

/* ... build datatype “mpi_type” describing values of a
single variable ... */

/* collectively write out all values of a single variable
*/

ncmpi_put_vara_all(ncid, varids[i], start_4d, count_4d,
unknowns, 1, mpi_type);

}

status = ncmpi_close(file_id);
Typical MPI buffer-count-type

tuple

139

Inside PnetCDF Define Mode

 In define mode (collective)
–  Use MPI_File_open to create file at create time
–  Set hints as appropriate (more later)
–  Locally cache header information in memory

• All changes are made to local copies at each process

 At ncmpi_enddef
–  Process 0 writes header with MPI_File_write_at
–  MPI_Bcast result to others
–  Everyone has header data in memory, understands

placement of all variables
• No need for any additional header I/O during data mode!

140

Inside PnetCDF Data Mode

 Inside ncmpi_put_vara_all (once per variable)
–  Each process performs data conversion into internal buffer
–  Uses MPI_File_set_view to define file region

• Contiguous region for each process in FLASH case
–  MPI_File_write_all collectively writes data

 At ncmpi_close
–  MPI_File_close ensures data is written to storage

 MPI-IO performs optimizations
–  Two-phase possibly applied when writing variables

 MPI-IO makes PFS calls
–  PFS client code communicates with servers and stores data

141

PnetCDF Wrap-Up

 PnetCDF gives us
–  Simple, portable, self-describing container for data
–  Collective I/O
–  Data structures closely mapping to the variables

described
 If PnetCDF meets application needs, it is likely to

give good performance
–  Type conversion to portable format does add overhead

 Some limits on (CDF-2) file format:
–  Fixed-size variable: < 4 GiB
–  Per-record size of record variable: < 4 GiB
–  232 -1 records
–  Work almost complete to relax these limits (CDF-5)

The HDF5 Interface and
File Format

142

143

HDF5

 Hierarchical Data Format, from the HDF Group
(formerly of NCSA)

 Data Model:
–  Hierarchical data organization in single file
–  Typed, multidimensional array storage
–  Attributes on dataset, data

 Features:
–  C, C++, and Fortran interfaces
–  Portable data format
–  Optional compression (not in parallel I/O mode)
–  Data reordering (chunking)
–  Noncontiguous I/O (memory and file) with hyperslabs

144

Dataset “temp”

HDF5 File “chkpt007.h5”

Group “/”

Group “viz”
datatype = H5T_NATIVE_DOUBLE
dataspace = (10, 20)

attributes = …

10 (data)

20

HDF5 Files

 HDF5 files consist of groups, datasets, and attributes
–  Groups are like directories, holding other groups and datasets
–  Datasets hold an array of typed data

•  A datatype describes the type (not an MPI datatype)
•  A dataspace gives the dimensions of the array

–  Attributes are small datasets associated with the file, a group, or
another dataset
•  Also have a datatype and dataspace
•  May only be accessed as a unit

145

HDF5 Data Chunking

 Apps often read subsets of arrays (subarrays)
 Performance of subarray access depends in part on

how data is laid out in the file
–  e.g. column vs. row major

 Apps also sometimes store sparse data sets
 Chunking describes a reordering of array data

–  Subarray placement in file determined lazily
–  Can reduce worst-case performance for subarray access
–  Can lead to efficient storage of sparse data

 Dynamic placement of chunks in file requires
coordination
–  Coordination imposes overhead and can impact

performance

Example: FLASH Particle I/O with HDF5

 FLASH “Lagrangian particles”
record location, characteristics of
reaction
–  Passive particles don’t exert forces;

pushed along but do not interact
 Particle data included in

checkpoints, but not in plotfiles;
dump particle data to separate file

 One particle dump file per time step
–  i.e., all processes write to single particle

file
 Output includes application info,

runtime info in addition to particle
data

146

Block=30;
Pos_x=0.65;
Pos_y=0.35;
Pos_z=0.125;
Tag=65;
Vel_x=0.0;
Vel_y=0.0;
vel_z=0.0;

Typical particle data

147

Storing Labels for Particles

int string_size = OUTPUT_PROP_LENGTH;

hsize_t dims_2d[2] = {npart_props, string_size};

hid_t dataspace, dataset, file_id, string_type;

/* store string creation time attribute */

string_type = H5Tcopy(H5T_C_S1);

H5Tset_size(string_type, string_size);

dataspace = H5Screate_simple(2, dims_2d, NULL);

dataset = H5Dcreate(file_id, “particle names",
string_type, dataspace, H5P_DEFAULT);

if (myrank == 0) {

 status = H5Dwrite(dataset, string_type, H5S_ALL,
H5S_ALL, H5P_DEFAULT, particle_labels);

}

get a copy of the
string type and

resize it

Write out
all 8
labels in
one call

Remember:
“S” is for dataspace,
“T” is for datatype,
“D” is for dataset!

148

Storing Particle Data with Hyperslabs (1 of 2)

hsize_t dims_2d[2];

/* Step 1: set up dataspace –
 describe global layout */

dims_2d[0] = total_particles;
dims_2d[1] = npart_props;

dspace = H5Screate_simple(2, dims_2d, NULL);

dset = H5Dcreate(file_id, “tracer particles”,
H5T_NATIVE_DOUBLE, dspace, H5P_DEFAULT);

Remember:
“S” is for dataspace,
“T” is for datatype,
“D” is for dataset!

local_np = 2,
part_offset = 3,
total_particles = 10,

Npart_props = 8

149

Storing Particle Data with Hyperslabs (2 of 2)

hsize_t start_2d[2] = {0, 0},
 stride_2d[1] = {1, 1};

hsize_t count_2d[2] = {local_np,

 npart_props};

/* Step 2: setup hyperslab for

 dataset in file */

start_2d[0] = part_offset; /* different for each process */

status = H5Sselect_hyperslab(dspace,
 H5S_SELECT_SET,
 start_2d, stride_2d, count_2d, NULL);

dataspace from
last slide

local_np = 2,
part_offset = 3,
total_particles = 10,

Npart_props = 8

-  Hyperslab selection similar to MPI-IO file view
-  Selections don’t overlap in this example (would be bad if writing!)
-  H5SSelect_none() if no work for this process

150

Collectively Writing Particle Data

/* Step 1: specify collective I/O */

dxfer_template = H5Pcreate(H5P_DATASET_XFER);

ierr = H5Pset_dxpl_mpio(dxfer_template,
H5FD_MPIO_COLLECTIVE);

/* Step 2: perform collective write */

status = H5Dwrite(dataset,
 H5T_NATIVE_DOUBLE,
 memspace,
 dspace,
 dxfer_template,
 particles);

“P” is for property list;
tuning parameters

dataspace
describing memory,

 could also use a
hyperslab

dataspace describing region
in file, with hyperslab from

previous two slides Remember:
“S” is for dataspace,
“T” is for datatype,
“D” is for dataset!

151

Inside HDF5

  MPI_File_open used to open file
  Because there is no “define” mode, file layout is

determined at write time
  In H5Dwrite:

–  Processes communicate to determine file layout
•  Process 0 performs metadata updates

–  Call MPI_File_set_view
–  Call MPI_File_write_all to collectively write

•  Only if this was turned on (more later)
  Memory hyperslab could have been used to define

noncontiguous region in memory
  In FLASH application, data is kept in native format and

converted at read time (defers overhead)
–  Could store in some other format if desired

  At the MPI-IO layer:
–  Metadata updates at every write are a bit of a bottleneck

•  MPI-IO from process 0 introduces some skew

152

h5perf: HDF5 Benchmark

 Written by HDF5 team
 Provides a comparison of peak performance

through the various interfaces
–  A little artificial; the interfaces are really used for

different purposes
 Similar to IOR, in that it offers APIs for parallel

HDF5, MPI-IO, and POSIX
–  Can vary block size, transfer size, number of data sets

per file, and size of each data set
–  Optional dataset chunking (not default)
–  Collective and independent I/O options

 Contiguous I/O
 1-32 clients (open-close time included)

153

H5perf Write Results
 On Lustre:

–  POSIX and independent MPI-IO have
similar performance (expected)

–  Collective MPI-IO and HDF5 lose
significant performance
•  Big, aligned blocks don’t benefit from collective

I/O optimizations
 On GPFS:

–  POSIX significantly faster than MPI-IO
(?)

–  All other results are tightly grouped

154

H5perf Read Results
  Locking and HEC don’t play well
 Much larger spread between

interfaces than in write cases
  Collective I/O isn’t a win when

you’re doing big block I/O at these
scales
–  Might help at very large scale to

better coordinate access

155

Graphic from A. Siegel, ANL

FLASH Astrophysics I/O Kernel

 Written by FLASH team
 Simulation of the I/O

performed by the FLASH
application

 We’ll show both “checkpoint”
and “plotfile with corners”
results
–  Checkpoints are full dumps necessary for restart
–  Plotfiles are smaller files used for visualization

 Fixed number of blocks per process
 Looking at relative performance of HDF5 and PnetCDF

–  Also absolute time to perform operations on these systems

156

FLASH I/O Benchmark Results

 Your mileage my vary!
 PnetCDF slower for

checkpoints on Lustre, PVFS
–  PnetCDF uses collective MPI-IO calls by

default

 PnetCDF considerably faster
on GPFS

–  Collective I/O not penalized

The netCDF-4 Effort

Thanks to Quincey Koziol (HDF
group), Russ Rew (UCAR), and Ed
Hartnett (UCAR) for helping ensure
the accuracy of this material.

157

158

netCDF-4

  Joint effort between Unidata (netCDF) and NCSA (HDF5)‏
–  Initial effort NASA funded.
–  Ongoing development Unidata/UCAR funded.

  Combine netCDF and HDF5 aspects
–  HDF5 file format (still portable, self-describing)‏
–  netCDF API

  Features
–  Parallel I/O
–  C, Fortran, and Fortran 90 language bindings (C++ in development)‏
–  per-variable compression
–  multiple unlimited dimensions
–  higher limits for file and variable sizes
–  backwards compatible with “classic” datasets
–  Groups
–  Compound types
–  Variable length arrays
–  Data chunking and compression (parallel reads only – serial writes)

NetCDF 4 API Summary

  nc_create_par("demo", NC_MPIIO|NC_NETCDF4,
 MPI_COMM_WORLD, MPI_INFO_NULL, &ncfile);

–  New flag ‘NC_NETCDF4’; MPI Communicator, Info
  nc_open_par("demo", NC_MPIIO,
 MPI_COMM_WORLD, MPI_INFO_NULL, &ncfile);

–  Can select POSIX (NC_MPIPOSIX) or MPI-IO (NC_MPIIO)
  nc_var_par_access(ncfile, varid, NC_COLLECTIVE);

–  Enable/disable collective I/O access (enabled by default).
  No longer need “send-to-master” model. (very pnetcdf-like)

159

Comparing PnetCDF and netCDF-4

160

 netCDF-4: parallel access through new function
calls (_par)
–  Open, create take MPI hints (like PnetCDF)
–  Collective I/O by default (like PnetCDF)
–  Same routine can be either independent or collective

depending on mode (like HDF5)
–  HDF5 tools understand netCDF-4 datasets

Parallel netCDF netCDF-4
ncmpi_open nc_open_par
ncmpi_create nc_create_par
ncmpi_enddef nc_enddef
ncmpi_def_dim nc_def_dim
ncmpi_put_vara_float_all nc_put_vara_float
ncmpi_begin_indep_data nc_var_par_access

161

netCDF-4 wrapup

 Released in June 2008
 Similarities to both HDF5 and Parallel netCDF

–  HDF5: additional routine to toggle collective vs.
independent

–  PnetCDF: takes MPI_Comm and MPI_Info as part of
open/create calls

–  HDF5 tools understand netCDF-4 datasets
 More information:

–  http://www.unidata.ucar.edu/software/netcdf/netcdf-4/
–  Muqun Yang, “Performance Study of Parallel

NetCDF4 in ROMS”, NCSA HDF group, June 30th,
2006

The ADaptable IO System
(ADIOS)

Thanks to Scott Klasky (ORNL) for
providing background material on
ADIOS.

162

ADaptable IO System (ADIOS)

The goal of ADIOS is to create an easy and efficient I/O
interface that hides the details of I/O from computational
science applications:
 Operate across multiple HPC architectures and parallel

file systems
–  Blue Gene, Cray, IB-based clusters
–  Lustre, PVFS2, GPFS, Panasas, PNFS

 Support many underlying file formats and interfaces
–  MPI-IO, POSIX, HDF5, netCDF
–  Facilitates switching underlying file formats to reach

performance goals
 Cater to common I/O patterns

–  Restarts, analysis, diagnostics
–  Different combinations provide different levels of IO

performance
 Compensate for inefficiencies in the current I/O

infrastructures
163

ADIOS Binary Packed (BP) File Format

Defers translation into portable format
to attain high performance at runtime.
Accelerates writing from large numbers
of processes through a log-like storage
format:
 Each process writes independently
 Coordinate only twice

–  Once at start to determine writing
locations

–  Once at end for metadata
collection

 Move the “header” to the end to aid
in alignment

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

T
im

e
 (

s
e
c
)

Number of Processes

Chimera I/O

Original HDF5
ADIOS (1 File)

ADIOS (N Files)

I/O times for Chimera
astrophysics application on Cray
XT at ORNL. “1 File” results may
benefit from Lustre optimizations
that were not in place at time of
testing.

164

Lightweight Application
Characterization with Darshan

Thanks to Phil Carns (carns@mcs.anl.gov) for
providing background material on Darshan.

165

Darshan Goals

 Capture application-level behavior
–  Both POSIX and MPI-IO
–  Portable across file systems and hardware

 Transparent to users
–  Negligible performance impact
–  No source code changes

 Leadership-class scalability
–  100,000+ processes

 Scalability tactics:
–  Bounded memory footprint
–  Minimize redundant information
–  Avoid shared resources at run time
–  Scalable algorithms to aggregate information

166

The Darshan Approach

 Use PMPI and ld wrappers to intercept I/O functions
–  Requires re-linking, but no code modification
–  Can be transparently included in mpicc
–  Compatible with a variety of compilers

 Record statistics independently at each process
–  Compact summary rather than verbatim record
–  Independent data for each file

 Collect, compress, and store results at shutdown time
–  Aggregate shared file data using custom MPI reduction operator
–  Compress remaining data in parallel with zlib
–  Write results with collective MPI-IO
–  Result is a single gzip-compatible file containing characterization

information

167

Example Statistics (per file)
 Counters:

–  POSIX open, read, write, seek, stat, etc.
–  MPI-IO nonblocking, collective, independent, etc.
–  Unaligned, sequential, consecutive, strided access
–  MPI-IO datatypes and hints

 Histograms:
–  access, stride, datatype, and extent sizes

 Timestamps:
–  open, close, first I/O, last I/O

 Cumulative bytes read and written
 Cumulative time spent in I/O and metadata operations
 Most frequent access sizes and strides
 Darshan records 150 integer or floating point parameters

per file, plus job level information such as command line,
execution time, and number of processes.

168

Job Summary

169

  Job summary tool shows
characteristics “at a glance”

  MADBench2 example
  Shows time spent in read, write,

and metadata
  Operation counts, access size

histogram, and access pattern

  Early indication of I/O behavior
and where to explore in further

  FIXME – the charts are pretty
hard to read

Chombo I/O Benchmark

 Why does the I/O take so long in this case?
 Why isn’t it busy writing data the whole time?

  Checkpoint writes from AMR
framework

  Uses HDF5 for I/O
  Code base is complex
  512 processes
  18.24 GB output file

170

Chombo I/O Benchmark

171

  Consecutive: 49.25%
  Sequential: 99.98%
  Unaligned in file: 99.99%
  Several recurring regular stride patterns

 Many write operations,
with none over 1 MB in
size

 Most common access size
is 28,800 (occurs 15622
times)

 No MPI datatypes or
collectives

 All processes frequently
seek forward between
writes

Darshan Summary

 Scalable tools like Darshan can yield useful insight
–  Identify characteristics that make applications successful
–  Identify problems to address through I/O research

 Petascale performance tools require special
considerations
–  Target the problem domain carefully to minimize amount of data
–  Avoid shared resources
–  Use collectives where possible

 For more information:
http://www.mcs.anl.gov/research/projects/darshan

172

I/O in Parallel Volume
Rendering

Thanks to Tom Peterka (ANL) and
Hongfeng Yu and Kwan-Liu Ma (UC
Davis) for providing the code on
which this material is based.

173

174

Parallel Volume Rendering

  Supernova model with focus
on core collapse

  Parallel rendering techniques
scale to 16k cores on Argonne
Blue Gene/P

  Produce a series of time steps
  11203 elements (~1.4 billion)‏
  Structured grid
  Simulated and rendered on

multiple platforms, sites
  I/O time now largest

component of runtime

of Cores

Ti
m

e
(s

ec
)

175

The I/O Code (essentially):
 MPI_Init(&argc, &argv);
 ncmpi_open(MPI_COMM_WORLD, argv[1], NC_NOWRITE,
 info, &ncid));
 ncmpi_inq_varid(ncid, argv[2], &varid);
 buffer =calloc(sizes[0]*sizes[1]*sizes[2],sizeof(float));
 for (i=0; i<blocks; i++) {
 decompose(rank, nprocs, ndims, dims, starts, sizes);
 ncmpi_get_vara_float_all(ncid, varid,
 starts, sizes, buffer);
 }
 ncmpi_close(ncid));
 MPI_Finalize();

  Read-only workload: no switch between define/data mode
 Omits error checking, full use of inquire (ncmpi_inq_*) routines
  Collective I/O of noncontiguous (in file) data
  “black box” decompose function:

–  divide 1120^3 elements into roughly equal mini-cubes
–  “face-wise” decomposition ideal for I/O access, but poor fit for volume

rendering algorithms

176

Volume Rendering and pNetCDF

 Original data: netCDF formatted
  Two approaches for I/O

–  Pre-processing: extract each variable to separate file
•  Lengthy, duplicates data

–  Native: read data in parallel, on-demand from dataset
• Skip preprocessing step but slower than raw

 Why so slow?
–  5 large “record” variables in

a single netcdf file
•  Interleaved on per-record basis

–  Bad interaction with default
MPI-IO parameters Record variable interleaving is performed

in N-1 dimension slices, where N is the
number of dimensions in the variable.

177

Access Method Comparison

 MPI-IO hints matter
  HDF5: many small metadata

reads
  Interleaved record format: bad

news

API time (s) accesses read data (MB) efficency
MPI (raw data) 11.388 960 7126 75.20%
PnetCDF (no hints) 36.030 1863 24200 22.15%
PnetCDF (hints) 18.946 2178 7848 68.29%
HDF5 16.862 23450 7270 73.72%
PnetCDF (beta) 13.128 923 7262 73.79%

178

Analysis: MPI-IO to extracted data

  2D depiction of file accesses
  Pre-processing extracted variable
  5GB file

  15 rounds of I/O
  Round i+1 overlaps slightly

with round i (75% efficiency)‏

of
fs

et

time

179

Analysis: Parallel netCDF, no hints

  Block depiction of 28 GB file
  Record variable scattered
  Reading in way too much data!

  Y axis larger here
  Default “cb_buffer_size” hint not

good for interleaved netCDF record
variables

of
fs

et

time

180

Analysis: Parallel netCDF, hints

  With tuning, much less reading
  Better efficiency, but still short of

MPI-IO

  Still some overlap
  “cb_buffer_size” now size of one

netCDF record
  Better efficiency, at slight perf cost

of
fs

et

time

181

Analysis: Parallel HDF5

  Different file format, different
characteristics

  Data exhibits spatial locality

  Thousands of metadata reads
–  All clients read MD from file

  Reads could be batched. Not sure
why not (implementation detail).

of
fs

et

time

182

Analysis: new Parallel netCDF

  Development effort to relax netCDF
file format limits

  No need for record variables
  Data nice and compact like MPI-IO

and HDF5

  Rank 0 reads header, broadcasts
to others
–  Much more scalable approach

  Approaching MPI-IO efficiency
  Maintains netCDF benefits

–  Portable, self-describing, etc.

of
fs

et

time

Future Storage
Technologies

183

Storage Futures

 pNFS
–  An extension to the NFSv4 file system protocol

standard that allows direct, parallel I/O between
clients and storage devices

–  Eliminates the scaling bottleneck found in today’s
NAS systems

–  Supports multiple types of back-end storage systems,
including traditional block storage, other file servers,
and object storage systems

 FLASH and other non-volatile devices
–  New level in storage hierarchy

184

Why a Standard for Parallel I/O?
 NFS is the only network file system standard

–  Proprietary file systems have unique advantages, but can
cause lock-in

 NFS widens the playing field
–  Panasas, IBM, EMC want to bring their experience in large

scale, high-performance file systems into the NFS
community. Sun and NetApp want a standard HPC solution.

–  Broader market benefits vendors
–  More competition benefits customers

 What about open source
–  NFSv4 Linux client is very important for NFSv4 adoption,

and therefore pNFS
–  Still need vendors that are willing to do the heavy lifting

required in quality assurance for mission critical storage
185

NFSv4 and pNFS

 NFS created in ’80s to share data among
engineering workstations

 NFSv3 widely deployed
 NFSv4 several years in the making, lots of new stuff

–  Integrated Kerberos (or PKI) user authentication
–  Integrated File Locking and Open Delegations (stateful

server!)
–  ACLs (hybrid of Windows and POSIX models)
–  Official path to add (optional) extensions

 NFSv4.1 adds even more
–  pNFS for parallel IO
–  Directory Delegations for efficiency
–  RPC Sessions for robustness, better RDMA support

186

Whence pNFS
 Gary Grider (LANL) and Lee Ward (Sandia)

–  Spoke with Garth Gibson about the idea of parallel IO for NFS in
2003

 Garth Gibson (Panasas/CMU) and Peter Honeyman (UMich/
CITI)
–  Hosted pNFS workshop at Ann Arbor in December 2003

 Garth Gibson, Peter Corbett (NetApp), Brent Welch
–  Wrote initial pNFS IETF drafts, presented to IETF in July and

November 2004
 Andy Adamson (CITI), David Black (EMC), Garth Goodson

(NetApp), Tom Pisek (Sun), Benny Halevy (Panasas), Dave
Noveck (NetApp), Spenser Shepler (Sun), Brian Pawlowski
(NetApp), Marc Eshel (IBM), (Many Others …)
–  Dean Hildebrand (CITI) did pNFS prototype based on PVFS
–  NFSv4 working group commented on drafts in 2005, folded pNFS

into the 4.1 minorversion draft in 2006
 pNFS approved by IETF December 2008

–  expect RFC in 2009

187

“Islands of Storage”

Filer Heads create I/O performance bottlenecks

Multiple instances create management challenges

Filer
Heads

NFS NFS NFS NFS

Filer
Heads

Filer
Heads

Filer
Heads

Traditional NAS

188

“Bridged Islands of Storage”

“In-band” Filer Head protocol creates I/O performance bottlenecks

Load balancing becomes management & performance issue

Clustered
Filer Heads

NFS NFS NFS NFS

Clustered NAS

189

“Pool of Parallel Clustered Storage”

I/O Performance Bottlenecks and Management Challenges
Solved as Filers Removed from Data Path

…direct, parallel data paths…

Metadata

Management

Parallel IO

190

pNFS: Standard Storage Clusters

 pNFS is an extension to the Network File System v4
protocol standard

 Allows for parallel and direct access
–  From Parallel Network File System clients
–  To Storage Devices over multiple storage protocols
–  Moves the Network File System server out of the data path

pNFS
Clients

Block (FC) /
Object (OSD) /

File (NFS)
Storage NFSv4.1 Server

data

191

The pNFS Standard

 The pNFS standard defines the NFSv4.1 protocol
extensions between the server and client

 The I/O protocol between the client and storage is
specified elsewhere, for example:
–  SCSI Block Commands (SBC) over Fibre Channel (FC)
–  SCSI Object-based Storage Device (OSD) over iSCSI
–  Network File System (NFS)

 The control protocol between the server and storage
devices is also specified elsewhere, for example:
–  SCSI Object-based Storage Device (OSD) over iSCSI

Client Storage

MetaData Server
192

pNFS Layouts
 Client gets a layout from the NFS Server
 The layout maps the file onto storage devices and

addresses
 The client uses the layout to perform direct I/O to

storage
 At any time the server can recall the layout
 Client commits changes and returns the layout when it’s

done
 pNFS is optional, the client can always use regular

NFSv4 I/O

193

Clients
Storage

NFSv4.1 Server

layout

pNFS Client

 Common client for different storage back ends
 Wider availability across operating systems
 Fewer support issues for storage vendors

194

Client Apps

Layout
Driver

pNFS Client

pNFS Server

Cluster
Filesystem

1. SBC (blocks) 
2. OSD (objects) 
3. NFS (files)

4. PVFS2 (files) 
5. Future backend…

Layout metadata 
grant & revoke

NFSv4.1

pNFS is not…

 Improved cache consistency
–  NFS has open-to-close consistency enforced by client polling of

attributes
–  NFSv4.1 directory delegations can reduce polling overhead

 Perfect POSIX semantics in a distributed file system
–  NFS semantics are good enough (or, all we’ll give you)
–  But note also the POSIX High End Computing Extensions

Working Group
•  http://www.opengroup.org/platform/hecewg/

 Clustered metadata
–  Not a server-to-server protocol for scaling metadata
–  But, it doesn’t preclude such a mechanism

195

Is pNFS Enough?

 Standard for out-of-band metadata
–  Great start to avoid classic server bottle neck
–  NFS has already relaxed some semantics to favor

performance
–  But there are certainly some workloads that will still

hurt
 Standard framework for clients of different

storage backends
–  Files
–  Objects
–  Blocks
–  PVFS2
–  Your project… (e.g., dcache.org)

196

pNFS Status

 Implementation interoperability continues
–  San Jose Connect-a-thon March ’06, February ’07, May ’08, June ‘09
–  Ann Arbor NFS Bake-a-thon September ’06, October ’07
–  Dallas pNFS inter-op, June ’07, Austin February ’08, Sept ’08, October ‘09

 Server vendors waiting for Linux client
–  Sun, NetApp, EMC, IBM, Panasas, …
–  2.6.30
•  exofs object storage file system (local) and iSCSI/OSDv2

–  2.6.31
• most of nfsv4.1: sessions, 4.1 as an option, no pnfs yet
•  server back channel is absent

–  2.6.32
• Finish nfsv4.1 including server callbacks

–  2.6.33
• Merge window opens around the end of the year

–  Goal to complete patch adoption by Q3 2010

197

How to use pNFS today

 Up-to-date GIT tree from Linux developers
–  bhalevy@panasas.com manages the source trees

 RedHat fedora RPMs that include pNFS
–  steved@redhat.com builds experimental packages

 pNFS mailing list, pnfs@linux-nfs.org
 http://open-osd.org

–  Useful to get to OSD target, the user level program
–  Exofs uses kernel initiator, need the target

198

How to use pNFS today

 Benny's git tree:
git://linux-nfs.org/~bhalevy/linux-pnfs.git

 The the kernel rpms can be found at:
http://fedorapeople.org/~steved/repos/pnfs/i686
http://fedorapeople.org/~steved/repos/pnfs/x86_64

 The source rpm can be found at:
http://fedorapeople.org/~steved/repos/pnfs/source/

 Bug database
 https://bugzilla.linux-nfs.org/index.cgi

 OSD target
http://open-osd.org/

199

Key pNFS Participants

 Panasas (Objects)
 ORNL and ESSC/DoD funding Linux pNFS development
 Network Appliance (Files over NFSv4)
  IBM (Files, based on GPFS)
 EMC (Blocks, HighRoad MPFSi)
 Sun (Files over NFSv4)
 U of Michigan/CITI (Linux maintainers, EMC and Microsoft

contracts)
 LSI – open source block-based server
 DESY – Java-based implementation

200

Prototype PNFS Performance

201

Prototype PNFS Performance

202

Panasas DirectFlow Performance

203

FLASH and Nonvolatile
Storage

204

The problem with rotating media

 Areal density increases by 40%/year
–  Per drive capacity increases by 70% to 100% per year
–  2TB “enterprise SATA” drives available in 2009
–  3TB desktop drives available first half of 2010
–  Drive vendors prepared to continue like this for years to come

 Drive interface speed increases by 10% per year
–  Takes longer and longer to completely read each new

generation of drive
 Seek times and rotational speeds not increasing all that

much
–  15,000 RPM and 2.5 ms/sec still the norm for high end
–  Significant power problems with higher RPM and faster seeks

•  Aerodynamic drag and friction loads go as the square of speed

205

FLASH is…
 Non-volatile

–  Each bit is stored in a “floating gate” that holds value without power
–  Electrons can leak, so shelf life and write count is limited

 Page-oriented
–  Read, write, and erase operations apply to large chunks
–  Smaller (e.g., 4K) read/write block based on addressing logic
–  Larger (e.g., 256K) erase block to amortize the time it takes to erase

 Medium speed
–  Slower than DRAM
–  Faster than disks for reading
–  Write speed dependent on workload

 Relatively cheap

206

http://icrontic.com/articles/how_ssds_work

FLASH Reliability

 SLC – Single Level Cell
–  One threshold, one bit
–  105 to 106 write cycles per

page
 MLC – Multi Level Cell

–  Multiple thresholds, multiple
bits (2 bits now, 3 & 4 soon)

–  N bits requires 2N Vt levels
–  104 write cycles per page
–  Denser and cheaper, but

slower and less reliable
 Wear leveling is critical

–  Pre-erase blocks before
writing is required

–  Page map indirection allows
shuffling of pages to do wear
leveling

207

http://www.micron.com/nandcom/

FLASH Speeds
 Samsung 4GB Device

–  16K erase blocks
100
usec

Transfer 4K over
serial interface

40 MB/sec

25 usec Load 4K register
from Flash

160 MB/
sec

125
usec

Read latency 32 MB/sec

200
usec

Store 4K register
to FLASH

20 MB/sec

225
usec

Write latency 16 MB/sec

1.5
msec

Erase 256K block 170 MB/
sec

1.725
msec

Worse case write 2.3 MB/sec

• Write performance heavily dependent
on workload and wear leveling algorithms
• Writes are slower with less free space

208

256K
block

4K
pages

4K
register

Serial interface

0

63

FLASH in the Storage Hierarchy

 On the compute nodes
–  High reliability local storage for OS partition
–  Local cache for memory checkpoints ?

• Device write speeds range from 4 MB/sec for a cheap USB,
to 80 or 100 MB/sec for MTron or Zeus, up to 600 MB/sec for
Fusion IO

–  One Fusion IO SSD (Solid State Disk) could double
cost of compute node

 On the storage server
–  Metadata storage
–  Low latency log device
–  Replacement for NVRAM ? Probably not enough

write bandwidth to absorb all the write data

209

Phase Change Memory
 GST: Germanium-Antimony-Tellurium Chalcogenide glass

–  Crystalline vs. Amorphous structure has different resistance
–  Write a bit by heating to two different temperatures

 DRAM-like device – no block erase required
 Slow (like FLASH) writes, but permanent

–  No leakage, but wear leveling still an issue

210

Courtesy http://en.wikipedia.org/wiki/User:Cyferz

 Read speed 2x slower than
DRAM today, and improving

 Manufacturability advantage
over DRAM and FLASH when
feature size gets small (20nm
and below)

 Storage Devices in 2010
 Main memory by 2015 ?

Wrapping Up

 We've covered a lot of ground in a short time
–  Very low-level, serial interfaces
–  High-level, hierarchical file formats

 Storage is a complex hardware/software system

 There is no magic in high performance I/O
–  Lots of software is available to support computational science

workloads at scale
–  Knowing how things work will lead you to better performance

 Using this software (correctly) can dramatically improve
performance (execution time) and productivity
(development time)

211

212

Printed References

  John May, Parallel I/O for High Performance Computing,
Morgan Kaufmann, October 9, 2000.
–  Good coverage of basic concepts, some MPI-IO, HDF5, and

serial netCDF
–  Out of print?

  William Gropp, Ewing Lusk, and Rajeev Thakur, Using
MPI-2: Advanced Features of the Message Passing
Interface, MIT Press, November 26, 1999.
–  In-depth coverage of MPI-IO API, including a very detailed

description of the MPI-IO consistency semantics

213

On-Line References (1 of 4)
 netCDF and netCDF-4

–  http://www.unidata.ucar.edu/packages/netcdf/
 PnetCDF

–  http://www.mcs.anl.gov/parallel-netcdf/
 ROMIO MPI-IO

–  http://www.mcs.anl.gov/romio/
 HDF5 and HDF5 Tutorial

–  http://www.hdfgroup.org/
–  http://hdf.ncsa.uiuc.edu/HDF5/
–  http://hdf.ncsa.uiuc.edu/HDF5/doc/Tutor/index.html

 POSIX I/O Extensions
–  http://www.opengroup.org/platform/hecewg/

 Darshan I/O Characterization Tool
–  http://www.mcs.anl.gov/research/projects/darshan

214

On-Line References (2 of 4)

  PVFS
http://www.pvfs.org/

  Panasas
http://www.panasas.com/

  Lustre
http://www.lustre.org/

  GPFS
http://www.almaden.ibm.com/storagesystems/file_systems/GPFS/

215

On-Line References (3 of 4)
 LLNL I/O tests (IOR, fdtree, mdtest)

–  http://www.llnl.gov/icc/lc/siop/downloads/download.html
 Parallel I/O Benchmarking Consortium (noncontig, mpi-tile-

io, mpi-md-test)
–  http://www.mcs.anl.gov/pio-benchmark/

 FLASH I/O benchmark
–  http://www.mcs.anl.gov/pio-benchmark/
–  http://flash.uchicago.edu/~jbgallag/io_bench/ (original version)

 b_eff_io test
–  http://www.hlrs.de/organization/par/services/models/mpi/b_eff_io/

 mpiBLAST
–  http://www.mpiblast.org

On Line References (4 of 4)

 NFS Version 4.1
–  draft-ietf-nfsv4-minorversion1-26.txt
–  draft-ietf-nfsv4-pnfs-obj-09.txt
–  draft-ietf-nfsv4-pnfs-block-09.txt

 pNFS Problem Statement
–  Garth Gibson (Panasas), Peter Corbett (Netapp),

Internet-draft, July 2004
–  http://www.pdl.cmu.edu/pNFS/archive/gibson-pnfs-problem-

statement.html

 Linux pNFS Kernel Development
–  http://www.citi.umich.edu/projects/asci/pnfs/linux

216

217

Acknowledgements

This work is supported in part by U.S. Department
of Energy Grant DE-FC02-01ER25506, by
National Science Foundation Grants EIA-9986052,
CCR-0204429, and CCR-0311542, and by the
U.S. Department of Energy under Contract DE-
AC02-06CH11357.

Thanks to Rajeev Thakur (ANL) and Bill Loewe
(Panasas) for their help in creating this material
and presenting this tutorial in prior years.

