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Computational Science 

  Use of computer simulation as a tool for 
greater understanding of the real world 
–  Complements experimentation and theory 

  Problems are increasingly computationally 
challenging 
–  Large parallel machines needed to 

perform calculations 
–  Critical to leverage parallelism in all 

phases 
  Data access is a huge challenge 

–  Using parallelism to obtain performance 
–  Finding usable, efficient, portable 

interfaces 
–  Understanding and tuning I/O 
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Visualization of entropy in Terascale 
Supernova Initiative application. Image from 
Kwan-Liu Ma’s visualization team at UC Davis. 

IBM Blue Gene/P system at Argonne 
National Laboratory. 



Goals of This Tutorial 

 Cover parallel I/O systems from bottom 
(storage) to top (high-level I/O libraries) 

 Provide an understanding of how these pieces 
fit together to provide a resource for 
computational science applications 

  Introduce the interfaces that one can use to 
access storage at various levels 

 Describe both “entrenched” interfaces and ones 
that are on the horizon 
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About Us 

  Rob Latham (robl@mcs.anl.gov) 
–  Senior Software Developer, MCS Division, Argonne National Laboratory 
–  Parallel Virtual File System 
–  ROMIO MPI-IO implementation 
–  Parallel netCDF high-level I/O library 

  Rob Ross (rross@mcs.anl.gov) 
–  Computer Scientist, MCS Division, Argonne National Laboratory 
–  Parallel Virtual File System 
–  SciDAC Scientific Data Management Center 
–  High End Computing Interagency Working Group (HECIWG) for File Systems and I/O  

  Brent Welch (welch@panasas.com) 
–  Director of Architecture, Panasas 
–  Berkeley Sprite OS Distributed Filesystem 
–  Panasas ActiveScale Filesystem 
–  IETF pNFS 

  Marc Unangst (mju@panasas.com) 
–  Software Architect, Panasas 
–  CMU NASD object storage & distributed filesystem 
–  Panasas ActiveScale Filesystem  
–  SPEC SFS 
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Outline of the Day 

 Introduction 
 Storage system models 
 File systems (part 1) 

 Break 

 File systems (part 2) 
 Benchmarking 
 POSIX 

 Lunch 

 MPI-IO 
 Parallel netCDF 
 HDF5 
 New and upcoming user 

interfaces 

 Break 

 I/O Understanding and 
tuning 

 Future storage 
technologies 

 Closing remarks 
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“There is no physics without I/O.” 
– Anonymous Physicist 

SciDAC Conference 
June 17, 2009 

(I think he might have been kidding.) 
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Large-Scale Data Sets 
Application teams are beginning to generate 10s of Tbytes of data in a single 
simulation. For example, a recent GTC run on 29K processors on the XT4 
generated over 54 Tbytes of data in a 24 hour period [1]. 

PI
 Project
 On-Line Data
Off-Line Data


Lamb, Don FLASH: Buoyancy-Driven Turbulent Nuclear Burning 75TB 300TB 
Fischer, Paul Reactor Core Hydrodynamics 2TB 5TB 
Dean, David Computational Nuclear Structure 4TB 40TB 
Baker, David Computational Protein Structure 1TB 2TB 
Worley, Patrick H. Performance Evaluation and Analysis 1TB 1TB 
Wolverton, Christopher Kinetics and Thermodynamics of Metal and 

Complex Hydride Nanoparticles 
5TB 100TB 

Washington, Warren Climate Science 10TB 345TB 
Tsigelny, Igor Parkinson's Disease 2.5TB 50TB 
Tang, William Plasma Microturbulence 2TB 10TB 
Sugar, Robert Lattice QCD 1TB 44TB 
Siegel, Andrew Thermal Striping in Sodium Cooled Reactors 4TB 8TB 
Roux, Benoit Gating Mechanisms of Membrane Proteins 10TB 10TB 

Data requirements for select 2008 INCITE applications at ALCF


[1] S. Klasky, personal correspondence, June 19, 2008. 
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Applications, Data Models, and I/O 

  Applications have data models 
appropriate to domain 

–  Multidimensional typed arrays, images composed 
of scan lines, variable length records 

–  Headers, attributes on data 

  I/O systems have very simple data 
models 

–  Tree-based hierarchy of containers 
–  Some containers have streams of bytes (files) 
–  Others hold collections of other containers 

(directories or folders) 

  Someone has to map from one to 
the other! 

Graphic from J. Tannahill, LLNL 

Graphic from A. Siegel, ANL 



Challenges in Application I/O 

 Leveraging aggregate communication and I/O bandwidth 
of clients 
–  …but not overwhelming a resource limited I/O system with 

uncoordinated accesses! 
 Limiting number of files that must be managed 

–  Also a performance issue 
 Avoiding unnecessary post-processing 
 Often application teams spend so much time on this that 

they never get any further: 
–  Interacting with storage through convenient abstractions 
–  Storing in portable formats 

 Parallel I/O software is available to address all of 
these problems, when used appropriately. 

9 



I/O for Computational Science 

 Additional I/O software provides improved performance and 
usability over directly accessing the parallel file system. Reduces or 
(ideally) eliminates need for optimization in application codes. 
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Parallel File System 

 Manage storage hardware 
–  Present single view 
–  Stripe files for performance 

 In the I/O software stack 
–  Focus on concurrent, independent access 
–  Publish an interface that middleware can use 

effectively 
•  Rich I/O language 
•  Relaxed but sufficient semantics 



Parallel File Systems 

 Building block for HPC I/O systems 
–  Present storage as a single, logical storage unit 
–  Stripe files across disks and nodes for performance 
–  Tolerate failures (in conjunction with other HW/SW) 

 User interface is often POSIX file I/O interface, not very 
good for HPC 
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An example parallel file system, with large astrophysics checkpoints distributed across multiple I/O 
servers (IOS)  while small bioinformatics files are each stored on a single IOS. 

C C C C C 

Comm. Network 

PFS PFS PFS PFS PFS 

IOS IOS IOS IOS 

H01 

/pfs 

/astro 

H03 /bio H06 

H02 
H05 

H04 

H01 

/astro 

/pfs 

/bio 

H02 
H03 
H04 

H05 H06 

chkpt32.nc 

prot04.seq prot17.seq 
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Process 0 Process 0 

Contiguous and Noncontiguous I/O 

  Contiguous I/O moves data from a single memory block into a single file region 
  Noncontiguous I/O has three forms: 

–  Noncontiguous in memory, noncontiguous in file, or noncontiguous in both 
  Structured data leads naturally to noncontiguous I/O (e.g. block decomposition) 
  Describing noncontiguous accesses with a single operation passes more knowledge 

to I/O system 

Noncontiguous 
in File 

Noncontiguous 
in Memory 

Ghost cell 
Stored element 

… 
Vars 0, 1, 2, 3, … 23 

Extracting variables from a block and 
skipping ghost cells will result in 
noncontiguous I/O. 



I/O Forwarding 

 Newest layer in the stack 
–  Present in some of the largest systems 
–  Provides bridge between system and 

storage in machines such as the 
Blue Gene/P 

 Allows for a point of aggregation, hiding true number of 
clients from underlying file system 

 Poor implementations can lead to unnecessary 
serialization, hindering performance 
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I/O Middleware 
  Match the programming model 

(e.g. MPI) 

  Facilitate concurrent access by 
groups of processes 
–  Collective I/O 
–  Atomicity rules 

  Expose a generic interface 
–  Good building block for high-level libraries 

  Efficiently map middleware operations into PFS ones 
–  Leverage any rich PFS access constructs, such as: 

•  Scalable file name resolution 
•  Rich I/O descriptions 
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Independent and Collective I/O 

  Independent I/O operations specify only what a single process will do 
–  Independent I/O calls do not pass on relationships between I/O on other processes  

  Many applications have phases of computation and I/O 
–  During I/O phases, all processes read/write data 
–  We can say they are collectively accessing storage 

  Collective I/O is coordinated access to storage by a group of processes 
–  Collective I/O functions are called by all processes participating in I/O 
–  Allows I/O layers to know more about access as a whole, more opportunities for 

optimization in lower software layers, better performance 

P0 P1 P2 P3 P4 P5 P0 P1 P2 P3 P4 P5 

Independent I/O Collective I/O 



17 

High Level Libraries 

 Match storage abstraction 
to domain 
–  Multidimensional datasets 
–  Typed variables 
–  Attributes 

 Provide self-describing, structured files 
 Map to middleware interface 

–  Encourage collective I/O 
 Implement optimizations that middleware 

cannot, such as 
–  Caching attributes of variables 
–  Chunking of datasets 



I/O Hardware and Software on Blue Gene/P  
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What we’ve said so far… 

 Application scientists have basic goals for interacting with 
storage 
–  Keep productivity high (meaningful interfaces) 
–  Keep efficiency high (extracting high performance from hardware) 

 Many solutions have been pursued by application teams, 
with limited success 
–  This is largely due to reliance on file system APIs, which are poorly 

designed for computational science 
 Parallel I/O teams have developed software to address 

these goals 
–  Provide meaningful interfaces with common abstractions 
–  Interact with the file system in the most efficient way possible 
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Storage System Models 

20 
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File Systems 

 File systems have two key roles 
–  Organizing and maintaining the file name space 
–  Storing contents of files 

 Local file systems are used by a single operating system 
instance (client) with direct access to the disk 
–  e.g. NTFS or ext3 on your laptop drive 

 Networked file systems provide access to one or more 
clients who might not have direct access to the disk 
–  e.g. NFS, AFS, etc. 
–  Parallel file systems (PFSes) are a special kind of networked file 

system written to provide high-performance I/O when multiple 
clients share file system resources (files) 



Parallel File System Design Issues 

 Have to solve same problems as local 
filesystem, at scale 
–  Block allocation 
–  Metadata management 
–  Data reliability and error correction 

 Additional requirements 
–  Cache coherency 
–  High availability 
–  Scalable capacity & performance 
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Network Attached Storage (NAS) 

 File server exports local filesystem 
using a file-oriented protocol 
–  NFS & CIFS are widely deployed  
–  HTTP/WebDAV?  FTP? 

 Scalability limited by server hardware 
–  Uses same building blocks (CPU, RAM, 

I/O and memory buses) as clients 
–  Handles moderate number of clients  
–  Handles moderate amount of storage 

 A nice model until it runs out of 
steam 
–  “Islands of storage” 
–  Bandwidth to a file limited by server 

bottleneck 
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NAS 
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Clustered NAS 

 More scalable than single-headed NAS 
–  Multiple NAS heads control back-end 

storage 
–  “In-band” NAS head still limits performance 

and drives up cost 
 Two primary architectures 

–  Private storage, forward requests to owner 
(pictured) 

–  Re-export SAN file system via NAS protocol 
 NFS shortcomings for HPC 

–  No good mechanism for dynamic load 
balancing 

–  Poor coherency (or no client caching) 
–  No parallel access to data (until pNFS) 

  Isilon, NetApp GX, BlueArc, AFS 
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SAN Shared Disk File Systems 

  SAN provides common management 
and provisioning for host storage 

–  Block devices accessible via iSCSI/FC 
–  Wire-speed performance potential 

  Originally for local host FS 
  Extended to create shared file system 

–  Asymmetric (pictured): separate 
metadata server manages blocks (and 
sometimes inode operations) 

–  Symmetric: all nodes share metadata & 
block management 

–  Reads & writes go direct to storage via 
the SAN 

  NAS access can be provided by “file 
head” client node(s) that re-export the 
SAN file system via NAS protocol 

  IBM GPFS, Sun QFS, SGI CXFS 

SAN 

Metadata 
server 

cluster 
network 
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Object-based Storage Clusters 

 Object Storage Devices 
–  High-level interface (inode/file-like) 
–  Block management inside the 

device 
–  Some variants include security 
–  OSD standard (SCSI T10) 

 File system layered over objects 
–  Metadata server manages 

namespace and external security 
–  OSD manages block allocation and 

internal security 
–  Out-of-band data transfer directly 

between OSDs and clients 
 High performance through 

clustering 
–  Scalable to thousands of clients 
–  55+ GB/sec demonstrated to 

single filesystem 

Metadata 
server(s) 

Object storage devices 
(OSDs) 
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Object Storage Architecture 

 Raises storage’s level of abstraction 
–  From logical blocks to objects (object is a container for data and 

attributes) 
–  Allows storage to understand how different blocks of a object are 

related 
–  Provides storage with necessary info to optimize storage resources  

 An evolutionary improvement to standard (SCSI) storage 
interface 

Block Based Disk Object Based Disk 

Source: Intel 

Operations: 
 Create object 

   Delete object 
   Read object 
   Write object 
   Get Attribute 
   Set Attribute 

Addressing: 
 [object, byte range] 

Allocation: 
 Internal 

Operations: 
 Read block 

   Write block 

Addressing: 
  Block range 

Allocation: 
 External 

27 



Wide Variety of Object Storage Devices 

                                                                     

◼ Panasas StorageBlade 

◼ 2 SATA disks, CPU and GE NIC 

◼ Disk array subsystem 

◼ Lustre, PVFS 

◼ Prototype Seagate OSD 

◼ Highly integrated, single disk 
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T10 OSD Security Model  

  All operations are secured by a 
capability 

–  Is the command valid? 
–  Is the command allowed to access 

the specified object ? 
  Manager and OSD are trusted 
  Security achieved by: 

–  Manager – authenticates/
authorizes clients and generates 
credentials. 

–  OSD – validates credential that a 
client presents.  

  Credential is signed 
–  OSD and Manager share a secret 

  POLICY ACCESS TAG attribute 
allows fine-grained access 
revocation 

Client 

Object 
Store 

Security 
Manager 

Shared Secret,  
refreshed periodically 

Authorization Req 

Capability, 
CAP_key Req, 

Capability, 
MACcap_key(Req) 
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Object Storage Standardization 

  Started with NSIC NASD research 1995-1999  
–   HP, IBM, Quantum, STK, Seagate, and CMU 
–  Eventually became SNIA Technology working group in ‘99 

•  45 participating companies 
  1999 moves to SNIA/T10 working group 
  1/2005: ANSI ratifies V1 T10 OSD standard (ANSI/INCITS 

400-2004) 
–  SNIA TWG finalizing OSD V2 features (target mid ‘08) 

•  Snapshots, import/export, multi-object capabilities and 
extended attributes 

CMU NASD Lustre 

NSIC NASD SNIA/T10 OSD OSD  V1 
Standard 

Panasas 

1995  1996   1997   1998    1999   2000   2001    2002   2003   2004   2005  2006  
2007 2008 

IBM / Seagate / Emulex  
OSD V1  
Prototype 

OSD  V2 
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Strengths of Object Storage 

 Object maintains data relationship within OSD 
–  Decisions on data layout can be optimized based on object size and 

usage 
–  OSD can be self-organizing, self-optimizing 

  Extensible attributes 
–  Built-in: size, timestamps, etc. 
–  Filesystem defined: owner, ACLs, etc. 
–  Application defined: HSM tags, content metadata, etc. 

  Access credentials are signed, cached at clients, enforced at device 
–  Clients can be untrusted (bugs & attacks expose only authorized object 

data) 
–  Protocol encodes security decisions, not policy 

  Command set works with SCSI architecture model (SAM) 
–  Encourages cost-effective implementation by storage device vendors 
–  Protocol designed with embedded system restrictions in mind 
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Parallel File Systems 
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Disk Access Rates over Time 

Thanks to R. Freitas of IBM Almaden Research Center for providing much of the data for this graph. 
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Blue Gene/P Parallel Storage System 
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Snapshot of Performance on Blue Gene/P 
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Maximum I/O rate of 
300 Mbytes/sec per  
I/O forwarding node 
limits performance in 
this region. 

Effective BW out of 
storage racks limits 
performance in this 
region (writing to  
/dev/null achieves 
around 65 Gbytes/sec). 

We believe this drop 
is due to a disk going 
bad in a storage rack; 
waiting on repeat 
testing to confirm. 

Low stat performance 
relative to create may 
be due to poor choice 
of server-side cache 
size (256 Kbytes)? 

Lang et. al, “I/O Performance Challenges at Leadership Scale”, to appear in SC09, November 2009. 



Parallel File Systems 

 Building block for HPC I/O systems 
–  Present storage as a single, logical storage unit 
–  Stripe files across disks and nodes for performance 

–  Tolerate failures (in conjunction with other HW/SW) 

An example parallel file system, with large astrophysics checkpoints distributed across multiple I/O 
servers (IOS)  while small bioinformatics files are each stored on a single IOS. 

C C C C C 

Comm. Network 

PFS PFS PFS PFS PFS 

IOS IOS IOS IOS 

H01 

/pfs 

/astro 

H03 /bio H06 

H02 
H05 

H04 

H01 

/astro 

/pfs 

/bio 

H02 
H03 
H04 

H05 H06 

chkpt32.nc 

prot04.seq prot17.seq 
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Data Distribution in Parallel File Systems 
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Locking in Parallel File Systems 
Most parallel file systems use locks to manage 
concurrent access to files 
 Files are broken up into lock units 
 Clients obtain locks on units that they will access 

before 
I/O occurs 

 Enables caching on clients as well (as long as 
client has a lock, it knows its cached data is valid) 

 Locks are reclaimed from clients when others 
desire access  

38 

If an access touches any 
data in a lock unit, the 
lock for that region must 
be obtained before access 
occurs. 



Locking and Concurrent Access 

39 



Fault Tolerance and Parallel File 
Systems 
Combination of hardware and software ensures 
continued operation in face of failures: 

–  RAID techniques hide disk failures 
–  Redundant controllers and shared access to storage 
–  Heartbeat software and quorum directs server failover 
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Production Parallel File Systems 

 All four systems scale to support the very largest 
compute clusters 
–  LLNL Purple, LANL RoadRunner, Sandia Red Storm, etc. 

 All but GPFS delegate block management to 
“object-like” data servers or OSDs 

 Approaches to metadata vary 
 Approaches to fault tolerance vary 
 Emphasis on features, “turn-key” deployment, vary 

GPFS 
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IBM GPFS 

 General Parallel File System 
 Legacy: IBM Tiger multimedia 

filesystem 
 Commercial product 
 Lots of configuration flexibility 

–  AIX, SP3, Linux 
–  Direct storage, Virtual Shared 

Disk, Network Shared Disk 
–  Clustered NFS re-export 

 Block interface to storage 
nodes 

 Distributed locking 
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GPFS: Block Allocation 

  I/O server exports exports local disk via block-oriented NSD 
protocol 

  Block allocation map shared by all nodes 
–  Block map split into N regions 
–  Each region has 1/Nth of each I/O server’s blocks 

 Writing node performs block allocation 
–  Locks a region of the block map to find free blocks 
–  Updates inode & indirect blocks 
–  If # regions ~= # client nodes, block map sharing reduced or eliminated 

  Stripe each block across multiple I/O servers (RAID-0) for 
performance 

  Large block size (1-4 MB) typically used 
–  Increases transfer size per I/O server 
–  Minimizes block allocation overhead 
–  Not great for small files 
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GPFS: Metadata Management 

 Symmetric model with distributed locking 
 Each node acquires locks and updates metadata 

structures itself 
 Global token manager manages locking assignments 

–  Client accessing a shared resource contacts token manager 
–  Token manager gives token to client, or tells client current 

holder of token 
–  Token owner manages locking, etc. for that resource 
–  Client acquires read/write lock from token owner before 

accessing resource 
 inode updates optimized for multiple writers 

–  Shared write lock on inode 
–  “Metanode token” for file controls which client writes inode to 

disk 
–  Other clients send inode updates to metanode, which merges 

them 
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GPFS: Caching 

 Clients cache reads and writes 
 Strong coherency, based on distributed locking 
 Client acquires R/W lock before accessing data 
 Optimistic locking algorithm 

–  First node accesses 0-1023, locks 0…EOF 
–  Second node accesses 1024-2047 

• First node reduces its lock to 0…1023 
• Second node locks 1024…EOF 

–  Lock splitting assumes client will continue accessing 
in current pattern (forward or backward sequential) 

 Client cache (“page pool”) pinned and separate 
from OS page/buffer cache 
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GPFS: Reliability 

 RAID underneath I/O server to handle disk failures & 
sector errors 

 Replication across I/O servers supported, but typically 
only used for metadata 

 I/O server failure handled via dual-attached RAID or 
SAN 
–  Backup I/O server takes over primary’s disks if it fails 
–  Can designate up to 8 potential owners for a disk (serial failover) 

 Nodes journal metadata updates before modifying FS 
structures 
–  Journal is per-node, so no sharing/locking issues 
–  Journal kept in shared storage (i.e., on the I/O servers) 
–  If node crashes, another node replays its journal to make FS 

consistent 
 Quorum/consensus protocol to determine set of “online” 

nodes 
–  Disk leases or SCSI-3 persistent reservations used for fencing 
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PVFS 

 Parallel Virtual File System 
–  Version 2 

 Open source, Linux oriented 

 Development led by Argonne 
National Laboratory 
–  Supported by many other institutions & companies 

 Asymmetric architecture (data servers & clients) 

 Data servers use object-like API 

 Focused on needs of HPC applications 
–  Interface optimized for MPI-IO semantics, not POSIX 
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PVFS: Block Allocation 

 I/O server exports file/object oriented API 
–  Storage object (“dataspace”) on an I/O server addressed 

by numeric handle 
–  Dataspace can be stream of bytes or key/value pairs 
–  Create dataspace, delete dataspace, read/write 

 Files & directories mapped onto dataspaces 
–  File may be single dataspace, or chunked/striped over 

several 
 Each I/O server manages block allocation for its 

local storage 
 I/O server uses local filesystem (ext3, XFS, etc.) to 

store dataspaces 
 Key/value dataspace stored using Berkeley DB 

table 
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PVFS: Metadata Management 

 Directory dataspace contains list of names & 
metafile handles 

 Metafile dataspace contains 
–  Attributes (permissions, owner, xattrs) 
–  Distribution function parameters 
–  Datafile handles 

 Datafile(s) store file data 
–  Distribution function determines pattern 
–  Default is 64 KB chunk size and round-robin placement 

 Directory and metadata updates are atomic 
–  Eliminates need for locking 
–  May require “losing” node in race to do significant cleanup 

 System configuration (I/O server list, etc.) stored in 
static file on all I/O servers 
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PVFS: Caching 

 Client only caches immutable metadata and 
read-only files 

 All other I/O (reads, writes) go through to I/O 
node 

 Strong coherency (writes are immediately visible 
to other nodes) 

 Flows from PVFS2 design choices 
–  No locking 
–  No cache coherency protocol 

 I/O server can cache data & metadata for local 
dataspaces 

 All prefetching must happen on I/O server 
 Reads & writes limited by client’s interconnect 
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PVFS: Reliability 

 Similar to GPFS 
–  RAID underneath I/O server to handle disk failures & 

sector errors 
–  Dual attached RAID to primary/backup I/O server to 

handle I/O server failures 
 Linux HA used for generic failover support 

–  Remote control power strip (STONITH) for fencing 
 Sequenced operations provide well-defined crash 

behavior 
–  Example: Creating a new file 

• Create datafiles 
• Create metafile that points to datafiles 
•  Link metafile into directory (atomic) 

–  Crash can result in orphans, but no other inconsistencies 
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Panasas ActiveScale (PanFS) 
 Commercial product based on CMU NASD research 
 Complete “appliance” solution (HW + SW), blade server 

form factor 
–  DirectorBlade = metadata server 
–  StorageBlade = OSD 

 Coarse grained metadata 
clustering 

 Linux native client for 
parallel I/O 

 NFS & CIFS re-export 
 Integrated battery/UPS 
 Integrated 10GE switch 
 Global namespace 
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iSCSI/OSD 

OSDFS 
Storage 
Blade 
1000+ 

SysMgr 
PanFS 

NFS/CIFS 

Client 

DirectorBlade 
100+ 

Client 

Compute Nodes 

RPC 

10,000+ 
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PanFS: Block Allocation 

 OSD exports object-oriented API 
–  Objects have a number (object ID), data, and attributes 
–  CREATE OBJECT, REMOVE OBJECT, READ, WRITE, GET 

ATTRIBUTE, SET ATTRIBUTE, etc. 
–  Commands address object ID and data range in object 
–  Capabilities provide fine-grained revocable access control 

 OSD manages private local storage 
–  Two SATA drives, 500/750/1000 GB each, 1-2 TB total capacity 

 Specialized filesystem (OSDFS) stores objects 
–  Delayed floating block allocation 
–  Efficient copy-on-write support 

 Files and directories stored as “virtual objects” 
–  Virtual object striped across multiple container objects on 

multiple OSDs 
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PanFS: Metadata Management 

 Directory is a list of names & object IDs in a RAID-1 
virtual object 

 Filesystem metadata stored as object attributes 
–  Owner, ACL, timestamps, etc. 
–  Layout map describing RAID type & OSDs that hold the 

file 
 Metadata server (DirectorBlade) 

–  Checks client permissions & provides map/capabilities 
–  Performs namespace updates & directory modifications 
–  Performs most metadata updates 

 Client modifies some metadata directly (length, 
timestamps) 

 Coarse-grained metadata clustering based on 
directory hierarchy 
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PanFS: Caching 

 Clients cache reads & writes 
 Strong coherency, based on callbacks 

–  Client registers callback with metadata server 
–  Callback type identifies sharing state (unshared, read-

only, read-write) 
–  Server notifies client when file or sharing state changes 

 Sharing state determines caching allowed 
–  Unshared: client can cache reads & writes 
–  Read-only shared: client can cache reads 
–  Read-write shared: no client caching 
–  Specialized “concurrent write” mode for cooperating apps 

(e.g. MPI-IO) 
 Client cache shared with OS page/buffer cache  
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PanFS: Reliability 

 RAID-1 & RAID-5 across OSDs to handle disk failures 
–  Any failure in StorageBlade (disk, RAM, CPU) is handled via 

rebuild 
–  Declustered parity allows scalable rebuild 

 “Vertical parity” inside OSD to handle sector errors 
 Integrated shelf battery makes all RAM in blades into 

NVRAM 
–  Metadata server journals updates to in-memory log 

•  Failover config replicates log to 2nd blade’s memory 
•  Log contents saved to DirectorBlade’s local disk on panic or power 

failure 
–  OSDFS commits updates (data+metadata) to in-memory log 

•  Log contents committed to filesystem on panic or power failure 
•  Disk writes well ordered to maintain consistency 

 System configuration in replicated database on subset of 
DirectorBlades 
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H
 G

 k E 

PanFS: Declustered RAID 

  Each file striped across different combination of StorageBlades 
  Component objects include file data and file parity 
  File attributes replicated on first two component objects 
  Components grow & new components created as data written 
  Declustered, randomized placement distributes RAID workload 

C
 F E 

20 OSD  
Storage Pool 

Mirrored 
or 9-OSD 
Parity 
Stripes 

Read 
about 
half of 
each 
surviving 
OSD 

Write a 
little 
to each 
OSD 

Scales up 
in larger 
Storage 
Pools 
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Panasas Scalable Rebuild 

  Shorter repair time in larger storage 
pools 
–  From 13 hours to 30 minutes 

  Four techniques to reduce MTTR 
–  Use multiple “RAID 

engines” (DirectorBlades) in 
parallel 

–  Spread disk I/O over more disk 
arms (StorageBlades) 

–  Reconstruct data blocks only, not 
unused space 

–  Proactively remove failing blades 
(SMART trips, other heuristics) 

  Two main causes of RAID failures  
1)   2nd drive failure in same RAID set during reconstruction of 1st failed drive 

•  Risk of two failures depends on time-to-repair 
2)  Media failure in same RAID set during reconstruction of 1st failed drive  

MB/sec Rebuild 
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Lustre 

 Open source object-based parallel 
file system 
–  Based on CMU NASD architecture 
–  Lots of file system ideas from Coda 

and InterMezzo 
–  ClusterFS acquired by Sun, 9/2007 

 Originally Linux-based, Sun now 
porting to Solaris 

  Asymmetric design with separate 
metadata server 

  Proprietary RPC network protocol 
between client & MDS/OSS 

  Distributed locking with client-driven 
lock recovery 

MDS 2 
(standby) 

Lustre Object Storage 
Servers (OSS, 100’s) 

Metadata 
Servers 

Failover 

MDS 1 
(active) 

Commodity 
SAN or disks 

Enterprise class 
Raid storage 

Failover 

QSW Elan 

Myrinet 

IB 

GigE 

OSS1 

OSS2 

OSS3 

OSS4 

OSS5 

OSS6 

OSS7 

Multiple storage 
networks are supported 

Lustre material from www.lustre.org and various talks 
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Lustre: Block Allocation 

 Each OSS (object storage server) manages one or more 
OSTs (object storage target) 
–  Typically 2-25 OSTs per OSS (max OST size 8 TB) 
–  Client communicates with OSS via proprietary RPC protocol 

•  RPC built on LNET message-passing facility (based on Sandia 
Portals) 
•  LNET supports RDMA over IB, Myrinet, and Quadrics Elan 

 OST stores data in modified ext3 file system 
 Currently porting OST to ZFS 

–  User-level ZFS via FUSE on Linux 
–  In-kernel ZFS on Solaris 

 RAID-0 striping across OSTs 
–  No dynamic space management among OSTs (i.e., no object 

migration to balance capacity) 
 Snapshots and quota done independently in each OST 
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Lustre: Metadata 

 Metadata server (MDS) hosts metadata target (MDT), 
which stores namespace tree and file metadata 

 MDT uses a modified ext3 filesystem to store Lustre 
metadata 
–  Directory tree of “stub” files that represents Lustre namespace 
–  Lustre metadata stored in stub file’s extended attributes 

•  Regular filesystem attributes (owner, group, permissions, size, etc.) 
•  List of object/OST pairs that contain file’s data (storage map) 

–  Single MDS and single MDT per Lustre filesystem 
–  Clustered MDS with multiple MDTs is on roadmap (Lustre 2.0) 

 Distributed lock protocol among MDS, OSS, and clients 
–  “Intents” convey hints about the high-level file operations so the 

right locks can be taken and server round-trips avoided 
–  If a failure occurs (MDS or OSS), clients do lock recovery after 

failover 
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Lustre: Caching 

  Clients can cache reads, writes, and some metadata operations 
  Locking protocol used to protect cached data and serialize access 

–  OSS manages locks for objects on its OSTs 
–  MDS manages locks on directories & inodes 
–  Client caches locks and can reuse them across multiple I/Os 
–  MDS/OSS recalls locks when conflict occurs 
–  Lock on logical file range may span several objects/OSTs if file is 

striped 
  Directory locks allow client to do CREATE without round-trip to 

MDS 
–  Only for unshared directory 
–  Create not “durable” until file is written & closed 
–  Non-POSIX semantic but helpful for many applications 

  Client cache shared with OS page/buffer cache  
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Lustre: Reliability 

  Block-based RAID underneath OST/MDT 
  Failover managed by external software (Red Hat Cluster Manager, 

Linux-HA, etc.) 
 OSS failover (active/active or clustered) 

–  OSTs on dual-ported RAID controller 
–  OSTs on SAN with connectivity to all OSS nodes 

 MDS failover (active/passive) 
–  MDT on dual-ported RAID controller 
–  Typically use dedicated RAID for MDT due to different workload 

  Crash recovery based on logs and transactions 
–  MDS logs operation (e.g., file delete) 
–  Later response from OSS cancels log entry 
–  Some client crashes cause MDS log rollback 
–  MDT & OST use journaling filesystem to avoid fsck 

  LNET supports redundant networks and link failover 
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Design Comparison 

GPFS PVFS Panasas Lustre 
Block mgmt Shared 

block map 
Object based Object based Object based 

Metadata 
location 

With data With data With data Separate 

Metadata 
written by 

Client Client Client, server Server 

Cache 
coherency & 
protocol 

Coherent;  
distributed 
locking 

Cache 
immutable/
RO data only 

Coherent; 
callbacks 

Coherent; 
distributed 
locking 

Reliability Block RAID Block RAID Object RAID Block RAID 
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Other File Systems 

 GFS (Google) 
–  Single metadata server + 100s of chunk servers 
–  Specialized semantics (not POSIX) 

• Relaxed consistency, no concurrent writes 
•  Atomic append operation 
• Copy-on-write snapshots 

–  Design for failures; all files replicated 3+ times 
–  Geared towards colocated processing (MapReduce) 

 Ceph (UCSC) 
–  OSD-based parallel filesystem 
–  Dynamic metadata partitioning between MDSs 
–  OSD-directed replication based on CRUSH distribution 

function (no explicit storage map) 
 Clustered NAS 

–  NetApp GX, Isilon, BlueArc, etc. 
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Other Issues 

 Reading and writing data is the easy part! 
 What about… 

–  Monitoring & troubleshooting? 
–  Backups? 
–  Snapshots? 
–  Disaster recovery & replication? 
–  Capacity management? 

• Quotas, HSM, ILM 
–  System expansion? 
–  Retiring old equipment? 
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Themes 

 Scalable clusters require scalable storage 
–  Centralized/single anything eventually becomes a 

bottleneck 
 File/object oriented storage API is superior to 

block oriented 
–  Parallel, scalable block allocation 
–  Block protocols have poor security & fencing support 
–  Block layouts are cumbersome 

 Reliability is important 
–  Large systems will constantly have something that’s 

broken 
–  Tolerating failures is necessary to make forward 

progress 
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Benchmarking and 
Application Performance 
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Performance Measurement 

 Lots of different performance metrics 
–  Sequential bandwidth, random I/Os, metadata operations 
–  Single-threaded vs. multi-threaded 
–  Single-client vs. multi-client 
–  N-to-N (file per process) vs. N-to-1 (single shared file) 

 Ultimately a method to try to estimate what you 
really care about 
–  “Time to results”, aka “How long does my app take?” 

 Benchmarks are best if they model your real 
application 
–  Need to know what kind of I/O your app does in order to 

choose appropriate benchmark 
–  Similar to CPU benchmarking – e.g., LINPACK 

performance may not predict how fast your codes run 
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What is a benchmark? 

 Standardized way to compare performance of 
different systems 

 Properties of a good benchmark 
–  Relevant: captures essential attributes of real 

application workload 
–  Simple: Provides an understandable metric 
–  Portable & scalable 
–  Consistent & repeatable results (on same HW) 
–  Accepted by users & vendors 

 Types of benchmark 
–  Microbenchmark 
–  Application-based benchmark 
–  Synthetic workload 
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Microbenchmarks 

 Measures one fundamental operation in isolation 
–  Read throughput, write throughput, creates/sec, etc. 

 Good for: 
–  Tuning a specific operation 
–  Post-install system validation 
–  Publishing a big number in a press release 

  Not as good for: 
–  Modeling & predicting application performance 
–  Measuring broad system performance characteristics 

  Examples: 
–  IOzone 
–  IOR 
–  Bonnie++ 
–  mdtest 
–  metarates 
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Application Benchmarks 

 Run real application on real data set, measure time 
 Best predictor of application performance on your cluster 
 Requires additional resources (compute nodes, etc.) 

–  Difficult to acquire when evaluating new gear 
–  Vendor may not have same resources as their customers 

 Can be hard to isolate I/O vs. other parts of application 
–  Performance may depend on compute node speed, memory 

size, interconnect, etc. 
–  Difficult to compare runs on different clusters 

 Time consuming – realistic job may run for days, weeks 
 May require large or proprietary dataset 

–  Hard to standardize and distribute 
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Synthetic Benchmarks 

 Selected combination of operations (usually a fractional 
mix) 
–  Operations selected at random or using random model (e.g., 

Hidden Markov Model) 
–  Operations and mix based on traces or sampling real workload 

 Can provide better model for application performance 
–  However, inherently domain-specific 
–  Need different mixes for different applications & workloads 
–  The more generic the benchmark, the less useful it is for 

predicting app performance 
–  Difficult to model a combination of applications 

 Examples: 
–  SPEC SFS 
–  TPC-C, TPC-D 
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Benchmarks for HPC 

  Unfortunately, there are few synthetic HPC benchmarks that stress I/O 
  HPC Challenge (http://icl.cs.utk.edu/hpcc/) 

–  Seven sub-benchmarks, all “kernel” benchmarks (LINPACK, matrix transpose, FFT, 
message ping-pong, etc.) 

–  Measures compute speed, memory bandwidth, cluster interconnect 
–  No I/O measurements 

  SPEC HPC2002 (http://www.spec.org/hpc2002/) 
–  Three sub-benchmarks (CHEM, ENV, SEIS), all based on real apps 
–  Only SEIS has a dataset of any size, and even it is tiny 

•  2 GB for Medium, 93 GB for X-Large 

  NAS Parallel Benchmarks (http://www.nas.nasa.gov/Resources/Software/npb.html) 
–  Mix of kernel and mini-application benchmarks, all CFD-focused 
–  One benchmark (BTIO) does significant I/O (135 GB N-to-1/collective write) 

  FLASH I/O Benchmark (http://www-unix.mcs.anl.gov/pio-benchmark/) 
–  Simulates I/O performed by FLASH (nuclear/astrophysics application, Net-CDF/HDF5) 

  Most HPC I/O benchmarking still done with microbenchmarks 
–  IOzone, IOR (LLNL), LANL MPI-IO Test, mdtest, etc. 

74 



Benchmarking Pitfalls 

 Not measuring what you think you are measuring 
–  Most common with microbenchmarks 
–  For example, measuring write or read from cache rather than to 

storage 
–  Watch for “faster than the speed of light” results 

 Multi-client benchmarks without synchronization across nodes 
–  Measure aggregate throughput only when all nodes are transferring 

data 
–  Application with I/O barrier may care more about when last node 

finishes 

Node 1 

Node 2 

Node 3 

Node 1 

Node 2 

Node 3 

 Benchmark that does not model application workload 
–  Different I/O size & pattern, different file size, etc. 
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Analyzing Results 

 Sanity-checking results is important 
 Figure out the “speed of light” in your system 
 Large sequential accesses 

–  Readahead can hide latency 
–  7200 RPM SATA    60-100 MB/sec/spindle 
–  15000 RPM FC  100-170 MB/sec/spindle 

 Small random access 
–  Seek + rotate limited 
–  Readahead rarely helps (and sometimes hurts) 
–  7200 RPM SATA  avg access 15 ms,   75-100 ops/sec/spindle 
–  15000 RPM FC  avg access   6 ms, 150-200 ops/sec/spindle 
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Beware Hidden Bottlenecks 

 “I added disks and I/O nodes but my apps aren’t 
running any faster!” 

 Common “hidden” bottleneck sources 
–  Oversubscribed switch line cards or internal network 

links 
–  NAS head throughput (for in-band filesystems) 
–  Cluster head node (for head-node based apps) 
–  Cluster CPU or message interconnect (not all jobs 

are I/O bound) 
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Head Node I/O 

  Traditional storage architecture led to a “head node” app I/O 
architecture 
–  Head node has user logins and access to direct-attached or SAN 

storage 
–  Head node reads data set & transmits it to other nodes 
–  Nodes send their results to head node which writes data file to storage 
–  Scalability requires an ever faster head node and either a faster local 

store or a faster (single) file server for the head node’s I/O load 
–  Data management can be an issue as datasets are copied to/from the 

cluster 
  Head node processing steps are application bottlenecks 

Head node 
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Parallel I/O 

  Restructure app to perform I/O in parallel from each compute node 
–  Eliminates head node I/O bottleneck 
–  Cluster lets you do computation in parallel 
–  Without parallel I/O, I/O time dominates as compute time shrinks (bigger/

faster cluster) 
  Challenges 

–  Requires direct access to storage from all cluster nodes (hard with SAN FS) 
–  Easiest way to convert application retains existing file structure (single file 

for results from all nodes) 
–  However, multiple nodes writing to shared file requires coordination 
–  Changing application I/O pattern requires source code – hard for COTS 

apps unless vendor supports both modes 
  POSIX API does not provide tools necessary for coordinating I/O 

–  Filesystem that provides strict POSIX consistency will sacrifice performance 
–  Relaxing semantics can improve performance, but may break applications 
–  No standard mechanisms for disclosing caching hints, etc. 
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Example Parallel I/O Performance Gain 
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BW 

300MB/s 
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Av. Read 
BW 

350MB/s 

2 hours  
51 mins 

Av. Read 
BW 

650MB/s 

4 Shelves 4 Shelves 1 Shelf 
Source: Paradigm & Panasas, February 2007 

Paradigm GeoDepth Prestack Migration 
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PVFS Test Platform: OSC Opteron Cluster 

 338 nodes, each with 
–  4 AMD Opteron CPUs at 2.6 GHz, 8 GB memory 

 Gigabit Ethernet network 
–  Switch Hierarchy with multiple GBit uplinks 

 16 I/O servers (also serving metadata) 
–  2 2-core Xeon CPU at 2.4 GHz, 3 GB memory 

 120 TB parallel file system 
–  Each server has Fibre Channel interconnect to back-

end RAID 



Panasas Test Lab 
  Hundreds of storage nodes and clients in our lab but of various 

vintage and for various other tests.  We created a small system for 
these tests: 

 3 Panasas Shelves, each with 
–  10 SB-1000a-XC StorageBlades 

•  (1.5GHz Celeron, 2GB, 1TB SATA, 1GE) 
–  1 DB-100a DirectorBlade 

•  (1.8GHz 475, 4GB, 1GE) 
–  18-port switch with 10GE uplink 

 48 client nodes 
–  2.8 GHz Xeon, 8GB, 1GE 

 GE Backbone 
–  4 GB/sec between  

clients and shelves 
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GPFS Test Platform: ASC Purple 

 1536 nodes, each with 
–  8 64-bit Power5 CPUs at 

1.9 GHz 
–  32 GB memory 

 Federation high-speed interconnect 
–  4Gbyte/sec theoretical bisection 

bandwidth per adapter 
–  ~5.5 Gbyte/sec measured per I/O server w/dual adapters 

 125 I/O servers, 3 metadata servers 
–  8 64-bit Power5 CPUs at 1.9 GHz 
–  32 GB memory 

 300 TB parallel file system 
–  HW RAID5 (4+P, 250 GB SATA Drives) 
–  24 RAIDs per I/O server 
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Lustre Test Platform: LLNL Thunder 

 1024 nodes each with 
–  4 64-bit Itanium2 CPUs at 1.4 GHz 
–  8 GB memory 

 Quadrics high-speed interconnect 
–  ~900 MB/s of bidirectional bandwidth 
–  16 Gateway nodes with 4 GigE connections to the 

Lustre network 
 64 object storage servers, 1 metadata server 

–  I/O server - dual 2.4 Ghz Xeons, 2GBs ram 
–  Metadata Server - dual 3.2 Ghz Xeons, 4 GBs ram 

 170 TB parallel file system 
–  HW RAID5 (8+P, 250 GB SATA Drives) 
–  108 RAIDs per rack 
–  8 racks of data disk 



Metadata Performance 

 Storage is more than reading & writing 
 Metadata operations change the namespace or file 

attributes 
–  Creating, opening, closing, and removing files 
–  Creating, traversing, and removing directories 
–  “Stat”ing files (obtaining the attributes of the file, such as 

permissions and file size) 
 Several users exercise metadata subsystems: 

–  Interactive use (e.g. “ls -l”) 
–  File-per-process POSIX workloads 
–  Collectively accessing files through MPI-IO (directly or indirectly) 
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mdtest: Parallel Metadata Performance 
 Measures performance of multiple tasks creating, stating, and 

deleting both files and directories in either a shared directory or 
unique (per task) directories 

  Demonstrates potential serialization of multiple, uncoordinated 
processes for directory access 

 Written at Lawrence Livermore National Laboratory 
 MPI code, processes synchronize for timing purposes 
 We ran three variations, each with 64 processes: 

–  mdtest -d $DIR -n 100 -i 3 -N 1 -v -u 
•  Each task creates 100 files in a unique subdirectory 

–  mdtest -d $DIR -n 100 -i 3 -N 1 -v -c 
•  One task creates 6400 files in one directory 
•  Each task opens, removes its own 

–  mdtest -d $DIR -n 100 -i 3 -N 1 -v 
•  Each task creates 100 files in a single shared directory 

 GPFS tests use 16 tasks with 4 tasks on each node 
  Panasas tests use 48 tasks on 48 nodes 
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mdtest Variations 

root dir 

Shared Directory 

A B C 

a0 
a99 

a1 b0 
b99 

b1 c0 
c99 

c1 

1)  Each process (A, 
B, C) creates, 
stats, and removes 
its own files in the 
root directory. 

A B C 

root dir 
subdir0 
a0 

a99 
a1 b0 

b99 
b1 c0 

c99 
c1 

subdir0 subdir0 

Unique Directory 

1)  Each process (A, B, 
C) creates own 
subdir in root 
directory, then 
chdirs into it. 

2)  A, B, and C create, 
stat, and remove 
their own files in the 
unique 
subdirectories. 

A B C 

root dir 

a0 
a99 

a1 b0 
b99 

b1 c0 
c99 

c1 

Single Process 

1)  Process A creates 
files for all 
processes in root 
directory. 

2)  Processes A, B, 
and C open, stat, 
and close their own 
files. 

3)  Process A removes 
files for all 
processes. 



mdtest Results 
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mdtest Analysis 

 PVFS 
–  No penalty if all processes operate on own files 
–  Like fdtree, lack of client caching hurts stat 

 GPFS: Very high cost to operating in the same 
directory 
–  Each client must acquire token & modify dir itself 

 Lustre has distributed directories, and as a 
result has a lower penalty for using shared 
directory 

 Panasas coarse-grained metadata clustering not 
active here, since all procs share common root 
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mpi-md-test: MPI-IO Metadata Operations 

 Written at Argonne National Laboratory 
 MPI code that measures performance of several collective MPI-IO 

metadata routines 
–  Create: each process collectively calls MPI_File_open to create N 

files 
•  mpi-md-test -O -d ./x -n 1000 

–  Open: each process collectively calls MPI_File_open on N pre-
existing files 
•  mpi-md-test -O -d ./x -n 1000 (after prior create run) 

–  Resize: each process collectively calls MPI_File_set_size on one 
file  
•  mpi-md-test -R -d ./x -n 100  

  Collective routines: potential for optimization 
–  Perform on one process, broadcast result to others 

  Allows us to see performance for coordinated metadata 
operations 
–  How performance scales with number processes 

  64x2, 64x4 for large runs with Lustre, 16x4, 32x4, 32x8 for large 
GPFS runs  



mpi-md-test Results 

 Scalable algorithms in PVFS 
result in performance as 
good as MPI collectives 

 Lustre numbers hampered by 
MPI resize impl. (resize on all 
nodes) 
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The POSIX I/O Interface 
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POSIX I/O Introduction 

 POSIX is the IEEE Portable Operating System Interface 
for Computing Environments 

 “POSIX defines a standard way for an application 
program to obtain basic services from the operating 
system” 
–  Mechanism almost all serial applications use to perform I/O 

 POSIX was created when a single computer owned its 
own file system 
–  No ability to describe collective I/O accesses 
–  It can be very expensive for a file system to guarantee POSIX 

semantics for heavily shared files (e.g., from clusters) 
–  Network file systems like NFS chose not to implement strict 

POSIX semantics in all cases (e.g., lazy access time 
propagation) 

 Presenting this interface primarily so that we can 
compare and contrast with other interfaces 
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Under the Covers of POSIX 

  POSIX API is a bridge between many tools and the file systems 
below 

 Operating system maps these calls directly into file system 
operations 

  File system performs I/O, using block- or region-oriented 
accesses depending on implementation 

  “Compliant” file systems will likely perform locking to guarantee 
atomicity of operations 
–  Can incur substantial overhead 
–  Seen in this Lustre H5perf graph, 

optimizations to speed serial 
I/O performance can result in 
substantial overhead when  
more than one process wants 
to access the same file 
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IOR: File System Bandwidth 

 Written at Lawrence Livermore National Laboratory 
 Named for the acronym ‘interleaved or random’ 
 POSIX, MPI-IO, HDF5, and Parallel-NetCDF APIs 

–  Shared or independent file access 
–  Collective or independent I/O (when available) 

 Employs MPI for process synchronization 
 Used here to obtain peak POSIX I/O rates for shared 

and separate files 
–  Running in segmented (contiguous) I/O mode 
–  We ran two variations: 

•  ./IOR -a POSIX -C -i 3 -t 4M -b 4G -e -v -v -o $FILE 
–  Single, shared file 

•  ./IOR -a POSIX -C -i 3 -t 4M -b 4G -e -v -v -F -o $FILE 
–  One file per process 
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IOR Access Patterns for Shared Files 

 Primary distinction between the two major shared-file patterns 
is whether each task’s data is contiguous or noncontiguous 

 For the segmented pattern, each task stores its blocks of data 
in a contiguous region in the file 

 With the strided access pattern, each task’s data blocks are 
spread out through a file and are noncontiguous 

 We only show segmented access pattern results 
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IOR POSIX Segmented Results 
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IOR POSIX Segmented Analysis 

 Aggregate performance increases to a point as 
more clients are added 
–  Striping and multiple network links 

 Expect to see a peak and flatten out after that 
peak 

 Sometimes early spikes appear due to cache 
effects (not seen here) 

 Incast hurts PVFS reads 
 Panasas shared file 25-40% slower than 

separate file 
–  IOR not using Panasas lazy coherency extensions 
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POSIX I/O High Performance 
Computing Extensions 
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APIs for HPC IO 

 POSIX IO APIs (open, close, read, write, stat) have 
semantics that can make it hard to achieve high 
performance when large clusters of machines 
access shared storage. 

 A working group (see next slide) of HPC users has 
drafted API additions for POSIX that will provide 
standard ways to achieve higher performance. 
–  HECEWG: High End Computing Extensions Working 

Group 
 Primary approach is either to relax semantics that 

can be expensive, or to provide more information to 
inform the storage system about access patterns. 
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HPC POSIX Enhancement Areas 

 Metadata 
–  optional attributes, bulk attributes 
–  statlite(), readdirplus(), readdirlite() 

 Coherence 
–  last writer wins and other such things can be optional 
–  lazyio_propogate(), lazyio_synchronize() 

 Shared file descriptors 
–  file opens for cooperating groups of processes 
–  openg(), openfh() 

 Ordering 
–  stream of bytes idea needs to move towards 

distributed vectors of units 
–  readx(), writex() 
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POSIX HPC IO 

 statlite, fstatlite 
–  optional attributes 

 readdirplus, readdirlite 
–  expose NFS bulk attribute op to applications 

 lazyio_propogate, lazyio_synchronize, 
O_LAZY 
–  Hint to buffer cache management 

 openg, openfh 
–  expose file handles to applications 

 readx, writex 
–  memory vector to/from file vector 

 http://www.opengroup.org/platform/hecewg/ 
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POSIX Wrap-Up 

  POSIX interface is a useful, ubiquitous interface for basic I/O 
  Lacks any constructs useful for parallel I/O 
  Should not be used in parallel applications if performance is desired 
  However, work is ongoing to improve the POSIX I/O interface! 

–  A working group of HEC users is drafting some proposed API additions 
for POSIX that will provide standard ways to achieve higher 
performance 

–  Two general approaches 
•  Relax semantics that can be 

expensive 
•  Better inform the storage system 

about access patterns 
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Data from Ruth Klundt (SNL), using Darkstar cluster. 

◼ Providing a substitute for the POSIX 
open() call allows us to avoid name space 
operations on many nodes, resulting in 
much faster open operations when many 
clients will access the same file. 



The MPI-IO Interface 
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MPI-IO 

 I/O interface specification for use in MPI apps 
 Data model is same as POSIX 

–  Stream of bytes in a file 
 Features: 

–  Collective I/O 
–  Noncontiguous I/O with MPI datatypes and file views 
–  Nonblocking I/O 
–  Fortran bindings (and additional languages) 
–  System for encoding files in a portable format 

(external32) 
• Not self-describing - just a well-defined encoding of types 

 Implementations available on most platforms 
(more later) 
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Independent and Collective I/O 

  Independent I/O operations specify only what a single process will do 
–  Independent I/O calls do not pass on relationships between I/O on other processes  

  Many applications have phases of computation and I/O 
–  During I/O phases, all processes read/write data 
–  We can say they are collectively accessing storage 

  Collective I/O is coordinated access to storage by a group of processes 
–  Collective I/O functions are called by all processes participating in I/O 
–  Allows I/O layers to know more about access as a whole, more opportunities for 

optimization in lower software layers, better performance 

P0 P1 P2 P3 P4 P5 P0 P1 P2 P3 P4 P5 

Independent I/O Collective I/O 
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Process 0 Process 0 Process 0 Process 0 

Contiguous Noncontiguous 
in File 

Noncontiguous 
in Memory 

Noncontiguous 
in Both 

Contiguous and Noncontiguous I/O 

  Contiguous I/O moves data from a single memory block into a single file region 
  Noncontiguous I/O has three forms: 

–  Noncontiguous in memory, noncontiguous in file, or noncontiguous in both 
  Structured data leads naturally to noncontiguous I/O (e.g. block decomposition) 
  Describing noncontiguous accesses with a single operation passes more 

knowledge to I/O system 
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Nonblocking and Asynchronous I/O 

 Blocking, or Synchronous, I/O operations return when 
buffer may be reused 
–  Data in system buffers or on disk 

 Some applications like to overlap I/O and computation 
–  Hiding writes, prefetching, pipelining 

 A nonblocking interface allows for submitting I/O 
operations and testing for completion later 

 If the system also supports asynchronous I/O, 
progress on operations can occur in the background 
–  Depends on implementation 

 Otherwise progress is made at start, test, wait calls 
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Example: Visualization Staging 

  Often large frames must be preprocessed before display on a tiled 
display 

  First step in process is extracting “tiles” that will go to each projector 
–  Perform scaling, etc. 

  Parallel I/O can be used to speed up reading of tiles 
–  One process reads each tile 

  We’re assuming a raw RGB format with a fixed-length header 

Tile 0 

Tile 3 

Tile 1 

Tile 4 Tile 5 

Tile 2 
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MPI Subarray Datatype 

  MPI_Type_create_subarray can describe any N-dimensional 
subarray of an N-dimensional array 

  In this case we use it to pull out a 2-D tile 
  Tiles can overlap if we need them to 
  Separate MPI_File_set_view call uses this type to select the file 

region 

frame_size[1] 

fra
m

e_
si

ze
[0

] 

Tile 4 

tile_start[1] tile_size[1] 

tile_start[0] tile_size[0] 
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Opening the File, Defining RGB Type 

MPI_Datatype rgb, filetype; 

MPI_File filehandle;   

ret = MPI_Comm_rank(MPI_COMM_WORLD, &myrank); 

/* collectively open frame file */ 

ret = MPI_File_open(MPI_COMM_WORLD, filename, 
MPI_MODE_RDONLY, MPI_INFO_NULL, &filehandle); 

/* first define a simple, three-byte RGB type */ 

ret = MPI_Type_contiguous(3, MPI_BYTE, &rgb); 

ret = MPI_Type_commit(&rgb); 

/* continued on next slide */ 
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Defining Tile Type Using Subarray 

/* in C order, last array 

 * value (X) changes most 

 * quickly 

 */ 

frame_size[1] = 3*1024; 

frame_size[0] = 2*768; 

tile_size[1] = 1024; 

tile_size[0] = 768; 

tile_start[1] = 1024 * (myrank % 3); 

tile_start[0] = (myrank < 3) ? 0 : 768; 

ret = MPI_Type_create_subarray(2, frame_size, 
tile_size, tile_start, MPI_ORDER_C, rgb, 
&filetype); 

ret = MPI_Type_commit(&filetype); 

frame_size[1] 

fra
m

e_
si

ze
[0

] 

Tile 4 

tile_start[1] tile_size[1] 

tile_start[0] 
tile_size[0] 
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Reading Noncontiguous Data 

/* set file view, skipping header */ 

ret = MPI_File_set_view(filehandle, 
file_header_size, rgb, filetype, "native", 
MPI_INFO_NULL); 

/* collectively read data */ 

ret = MPI_File_read_all(filehandle, buffer, 
tile_size[0] * tile_size[1], rgb, &status); 

ret = MPI_File_close(&filehandle); 

  MPI_File_set_view is the MPI-IO mechanism for describing 
noncontiguous regions in a file 
  In this case we use it to skip a header and read a subarray 

  Using file views, rather than reading each individual piece, gives the 
implementation more information to work with (more later) 

  Likewise, using a collective I/O call (MPI_File_read_all) provides 
additional information for optimization purposes (more later) 
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Under the Covers of MPI-IO 

 MPI-IO implementation given a lot of information 
in this example: 
–  Collection of processes reading data 
–  Structured description of the regions 

 Implementation has some options for how to 
perform the data reads 
–  Noncontiguous data access optimizations 
–  Collective I/O optimizations 



Noncontiguous I/O: Data Sieving 

  Data sieving is used to 
combine lots of small 
accesses into a single larger 
one 
–  Remote file systems (parallel or 

not) tend to have high latencies 
–  Reducing # of operations 

important 
  Similar to how a block-based 

file system interacts with 
storage 

  Generally very effective, but 
not as good as having a PFS 
that supports noncontiguous 
access 

Buffer 

Memory 

File 

Data Sieving Read Transfers 
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Data Sieving Write Operations 

Buffer 

Memory 

File 

Data Sieving Write Transfers 

 Data sieving for writes is 
more complicated 
–  Must read the entire region 

first 
–  Then make changes in 

buffer 
–  Then write the block back 

 Requires locking in the 
file system 
–  Can result in false sharing 

(interleaved access) 
 PFS supporting 

noncontiguous writes is 
preferred 
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Collective I/O and Two-Phase I/O 

  Problems with independent, noncontiguous access 
–  Lots of small accesses 
–  Independent data sieving reads lots of extra data, can exhibit false sharing 

  Idea: Reorganize access to match layout on disks 
–  Single processes use data sieving to get data for many 
–  Often reduces total I/O through sharing of common blocks 

  Second “phase” redistributes data to final destinations 
  Two-phase writes operate in reverse (redistribute then I/O) 

–  Typically read/modify/write (like data sieving) 
–  Overhead is lower than independent access because there is little or no false sharing 

  Note that two-phase is usually applied to file regions, not to actual blocks 

Two-Phase Read Algorithm 

p0 p1 p2 p0 p1 p2 p0 p1 p2 

Phase 1: I/O Initial State Phase 2: Redistribution 



Two-Phase I/O Algorithms 
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For more information, see W.K. Liao and A. Choudhary, “Dynamically Adapting File Domain Partitioning Methods for Collective I/O Based on 
Underlying Parallel File System Locking Protocols,” SC2008, November, 2008. 



Impact of Two-Phase I/O Algorithms 

 This graph shows the 
performance for the S3D 
combustion code, writing to a 
single file. 

 Aligning with lock boundaries 
doubles performance over 
default “even” algorithm. 

 “Group” algorithm similar to 
server-aligned algorithm on last 
slide. 

 Testing on Mercury, an IBM 
IA64 system at NCSA, with 54 
servers and 512KB stripe size. 
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S3D Turbulent Combustion Code 

  S3D is a turbulent combustion 
application using a direct numerical 
simulation solver from Sandia 
National Laboratory 

  Checkpoints consist of four global 
arrays 
–  2 3-dimensional 
–  2 4-dimensional 
–  50x50x50 fixed 

subarrays 
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Thanks to Jackie Chen (SNL), Ray Grout (SNL), and Wei-Keng Liao (NWU) for providing the S3D I/O benchmark, Wei-Keng Liao 
for providing this diagram. 



Impact of Optimizations on S3D I/O 
  Testing with PnetCDF output to single file, three configurations,  

16 processes 
–  All MPI-IO optimizations (collective buffering and data sieving) disabled 
–  Independent I/O optimization (data sieving) enabled 
–  Collective I/O optimization (collective buffering, a.k.a. two-phase I/O) enabled 
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Coll. Buffering  
and Data Sieving 
Disabled 

Data Sieving 
Enabled 

Coll. Buffering 
Enabled (incl. 
Aggregation) 

POSIX writes 102,401 81 5 
POSIX reads 0 80 0 
MPI-IO writes 64 64 64 
Unaligned in file 102,399 80 4 
Total written (MB) 6.25 87.11 6.25 
Runtime (sec) 1443 11 6.0 
Avg. MPI-IO time 
per proc (sec) 

1426.47 4.82 0.60 
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noncontig Benchmark 

 Contributed by Joachim Worringen (formerly of 
NEC) 

 Constructs a datatype and performs 
noncontiguous I/O in file 
–  Struct of a vector of contigs 
–  Option for both independent and collective access 
–  Option to vary amount of data, how many pieces 

 Far from ideal access pattern for many file 
systems and MPI-IO implementations 
–  Naïve approach: lots and lots of tiny file accesses 
–  But lots of room for optimization, esp. in collective case 

 Lets us explore how well the file system handles 
increasingly poor access patterns 
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noncontig I/O Results 
 This is one area where PVFS 

shines 
–  High fraction of block BW for 

independent, noncontiguous I/O 
 All file systems benefit from 

collective I/O optimizations for all 
but the most contiguous patterns 
–  Collective I/O optimizations can be 

absolutely critical to performance 
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Common Functionality 
ADIO Interface 

UFS 

MPI-IO Interface 

NFS XFS PVFS 
ROMIO’s layered architecture. 

MPI-IO Implementations 

  Different MPI-IO implementations exist 
  Three better-known ones are: 

–  ROMIO from Argonne National Laboratory 
•  Leverages MPI-1 communication 
•  Supports local file systems, network file systems, 

parallel file systems 
–  UFS module works GPFS, Lustre, and others 

•  Includes data sieving and two-phase optimizations 
–  MPI-IO/GPFS from IBM (for AIX only) 

•  Includes two special optimizations 
–  Data shipping -- mechanism for coordinating access to a file to 

alleviate lock contention (type of aggregation) 
–  Controlled prefetching -- using MPI file views and access patterns 

to predict regions to be accessed in future 
–  MPI from NEC 

•  For NEC SX platform and PC clusters with Myrinet, Quadrics, IB, or 
TCP/IP 
•  Includes listless I/O optimization -- fast handling of noncontiguous I/O 

accesses in MPI layer 
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MPI-IO Wrap-Up 

 MPI-IO provides a rich interface allowing us to 
describe 
–  Noncontiguous accesses in memory, file, or both 
–  Collective I/O 

 This allows implementations to perform many 
transformations that result in better I/O 
performance 

 Also forms solid basis for high-level I/O libraries 
–  But they must take advantage of these features! 



The Parallel netCDF 
Interface and File Format 

Thanks to Wei-Keng Liao and Alok 
Choudhary (NWU) for their help in 
the development of PnetCDF. 
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Higher Level I/O Interfaces 

 Provide structure to files 
–  Well-defined, portable formats 
–  Self-describing 
–  Organization of data in file 
–  Interfaces for discovering contents 

 Present APIs more appropriate for computational 
science 
–  Typed data 
–  Noncontiguous regions in memory and file 
–  Multidimensional arrays and I/O on subsets of these 

arrays 
 Both of our example interfaces are implemented 

on top of MPI-IO 
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Parallel netCDF (PnetCDF) 

 Based on original “Network Common Data Format” (netCDF) 
work from Unidata 
–  Derived from their source code 

 Data Model: 
–  Collection of variables in single file 
–  Typed, multidimensional array variables 
–  Attributes on file and variables 

 Features: 
–  C and Fortran interfaces 
–  Portable data format (identical to netCDF) 
–  Noncontiguous I/O in memory using MPI datatypes 
–  Noncontiguous I/O in file using sub-arrays 
–  Collective I/O 

 Unrelated to netCDF-4 work (More about netCDF-4 later) 



Data Layout in netCDF Files 
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Record Variables in netCDF 

 Record variables are defined to 
have a single “unlimited” 
dimension 
–  Convenient when a dimension size 

is unknown at time of variable 
creation 

 Record variables are stored 
after all the other variables in an 
interleaved format 
–  Using more than one in a file is 

likely to result in poor performance 
due to number of noncontiguous 
accesses 
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Storing Data in PnetCDF 

 Create a dataset (file) 
–  Puts dataset in define mode 
–  Allows us to describe the contents 

• Define dimensions for variables 
• Define variables using dimensions 
• Store attributes if desired (for variable or dataset) 

 Switch from define mode to data mode to write 
variables 

 Store variable data 
 Close the dataset 
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Example: FLASH Astrophysics 

  FLASH is an astrophysics code 
for 
studying events such as 
supernovae 
–  Adaptive-mesh hydrodynamics 
–  Scales to 1000s of processors 
–  MPI for communication 

  Frequently checkpoints: 
–  Large blocks of typed variables 

from all processes 
–  Portable format 
–  Canonical ordering (different than 

in memory) 
–  Skipping ghost cells 

Ghost cell 
Stored element 

… 
Vars 0, 1, 2, 3, … 23 
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Example: FLASH with PnetCDF 

 FLASH AMR structures do not map directly to 
netCDF multidimensional arrays 

 Must create mapping of the in-memory FLASH 
data structures into a representation in netCDF 
multidimensional arrays 

 Chose to 
–  Place all checkpoint data in a single file 
–  Impose a linear ordering on the AMR blocks 

• Use 4D variables 
–  Store each FLASH variable in its own netCDF variable 

• Skip ghost cells 
–  Record attributes describing run time, total blocks, etc. 
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Defining Dimensions 

int status, ncid, dim_tot_blks, dim_nxb, 
dim_nyb, dim_nzb; 

MPI_Info hints; 

/* create dataset (file) */ 

status = ncmpi_create(MPI_COMM_WORLD, filename, 
NC_CLOBBER, hints, &file_id); 

/* define dimensions */ 

status = ncmpi_def_dim(ncid, "dim_tot_blks", 
tot_blks, &dim_tot_blks); 

status = ncmpi_def_dim(ncid, "dim_nxb", 
nzones_block[0], &dim_nxb); 

status = ncmpi_def_dim(ncid, "dim_nyb", 
nzones_block[1], &dim_nyb); 

status = ncmpi_def_dim(ncid, "dim_nzb", 
nzones_block[2], &dim_nzb); 

Each dimension gets 
a unique reference 
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Creating Variables 

int dims = 4, dimids[4]; 

int varids[NVARS]; 

/* define variables (X changes most quickly) */ 

dimids[0] = dim_tot_blks; 

dimids[1] = dim_nzb; 

dimids[2] = dim_nyb; 

dimids[3] = dim_nxb;   
for (i=0; i < NVARS; i++) { 

status = ncmpi_def_var(ncid, unk_label[i], 
NC_DOUBLE, dims, dimids, &varids[i]); 

} 

Same dimensions used 
for all variables 
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Storing Attributes 

/* store attributes of checkpoint */ 

status = ncmpi_put_att_text(ncid, NC_GLOBAL, 
"file_creation_time", string_size, 
file_creation_time); 

status = ncmpi_put_att_int(ncid, NC_GLOBAL, 
"total_blocks", NC_INT, 1, tot_blks); 

status = ncmpi_enddef(file_id); 

/* now in data mode … */ 
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Writing Variables 

double *unknowns; /* unknowns[blk][nzb][nyb][nxb] */ 

size_t start_4d[4], count_4d[4]; 

start_4d[0] = global_offset; /* different for each process */ 

start_4d[1] = start_4d[2] = start_4d[3] = 0; 

count_4d[0] = local_blocks; 

count_4d[1] = nzb;  count_4d[2] = nyb;  count_4d[3] = nxb; 

for (i=0; i < NVARS; i++) { 

/* ... build datatype “mpi_type” describing values of a 
single variable ... */ 

/* collectively write out all values of a single variable 
*/ 

ncmpi_put_vara_all(ncid, varids[i], start_4d, count_4d, 
unknowns, 1, mpi_type); 

} 

status = ncmpi_close(file_id); 
Typical MPI buffer-count-type 

tuple 
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Inside PnetCDF Define Mode 

 In define mode (collective) 
–  Use MPI_File_open to create file at create time 
–  Set hints as appropriate (more later) 
–  Locally cache header information in memory 

• All changes are made to local copies at each process 

 At ncmpi_enddef  
–  Process 0 writes header with MPI_File_write_at  
–  MPI_Bcast result to others 
–  Everyone has header data in memory, understands 

placement of all variables 
• No need for any additional header I/O during data mode! 
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Inside PnetCDF Data Mode 

 Inside ncmpi_put_vara_all (once per variable)  
–  Each process performs data conversion into internal buffer 
–  Uses MPI_File_set_view  to define file region 

• Contiguous region for each process in FLASH case 
–  MPI_File_write_all collectively writes data 

 At ncmpi_close  
–  MPI_File_close ensures data is written to storage 

 MPI-IO performs optimizations 
–  Two-phase possibly applied when writing variables 

 MPI-IO makes PFS calls 
–  PFS client code communicates with servers and stores data 
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PnetCDF Wrap-Up 

 PnetCDF gives us 
–  Simple, portable, self-describing container for data 
–  Collective I/O 
–  Data structures closely mapping to the variables 

described 
 If PnetCDF meets application needs, it is likely to 

give good performance 
–  Type conversion to portable format does add overhead 

 Some limits on (CDF-2) file format: 
–  Fixed-size variable:  < 4 GiB 
–  Per-record size of record variable: < 4 GiB 
–  232 -1 records  
–  Work almost complete to relax these limits (CDF-5) 



The HDF5 Interface and 
File Format 
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HDF5 

 Hierarchical Data Format, from the HDF Group 
(formerly of NCSA) 

 Data Model: 
–  Hierarchical data organization in single file 
–  Typed, multidimensional array storage 
–  Attributes on dataset, data 

 Features: 
–  C, C++, and Fortran interfaces 
–  Portable data format 
–  Optional compression (not in parallel I/O mode) 
–  Data reordering (chunking) 
–  Noncontiguous I/O (memory and file) with hyperslabs 
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Dataset “temp” 

HDF5 File “chkpt007.h5” 

Group “/” 

Group “viz” 
datatype = H5T_NATIVE_DOUBLE 
dataspace = (10, 20) 

attributes = … 

10 (data) 

20 

HDF5 Files 

 HDF5 files consist of groups, datasets, and attributes 
–  Groups are like directories, holding other groups and datasets 
–  Datasets hold an array of typed data 

•  A datatype describes the type (not an MPI datatype) 
•  A dataspace gives the dimensions of the array 

–  Attributes are small datasets associated with the file, a group, or 
another dataset 
•  Also have a datatype and dataspace 
•  May only be accessed as a unit 
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HDF5 Data Chunking 

 Apps often read subsets of arrays (subarrays) 
 Performance of subarray access depends in part on 

how data is laid out in the file 
–  e.g. column vs. row major 

 Apps also sometimes store sparse data sets 
 Chunking describes a reordering of array data 

–  Subarray placement in file determined lazily 
–  Can reduce worst-case performance for subarray access 
–  Can lead to efficient storage of sparse data 

 Dynamic placement of chunks in file requires 
coordination 
–  Coordination imposes overhead and can impact 

performance 



Example: FLASH Particle I/O with HDF5 

 FLASH “Lagrangian particles” 
record location, characteristics of 
reaction 
–  Passive particles don’t exert forces; 

pushed along but do not interact 
 Particle data included in 

checkpoints, but not in plotfiles; 
dump particle data to separate file 

 One particle dump file per time step 
–  i.e., all processes write to single particle 

file 
 Output includes application info, 

runtime info in addition to particle 
data 
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Block=30; 
Pos_x=0.65; 
Pos_y=0.35; 
Pos_z=0.125; 
Tag=65; 
Vel_x=0.0; 
Vel_y=0.0; 
vel_z=0.0; 

Typical particle data 
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Storing Labels for Particles 

int string_size = OUTPUT_PROP_LENGTH; 

hsize_t dims_2d[2] = {npart_props, string_size}; 

hid_t dataspace, dataset, file_id, string_type; 

/* store string creation time attribute */ 

string_type = H5Tcopy(H5T_C_S1); 

H5Tset_size(string_type, string_size); 

dataspace = H5Screate_simple(2, dims_2d, NULL); 

dataset   = H5Dcreate(file_id, “particle names", 
string_type, dataspace, H5P_DEFAULT); 

if (myrank == 0) {  

 status = H5Dwrite(dataset, string_type, H5S_ALL, 
H5S_ALL,  H5P_DEFAULT, particle_labels); 

} 

get a copy of the 
string type and 

resize it 

Write out 
all 8 
labels in 
one call 

Remember: 
“S” is for dataspace, 
“T” is for datatype, 
“D” is for dataset! 
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Storing Particle Data with Hyperslabs (1 of 2) 

hsize_t dims_2d[2];  

/* Step 1: set up dataspace –  
        describe global layout */ 

dims_2d[0] = total_particles; 
dims_2d[1] = npart_props; 

dspace = H5Screate_simple(2, dims_2d, NULL); 

dset = H5Dcreate(file_id, “tracer particles”, 
H5T_NATIVE_DOUBLE, dspace, H5P_DEFAULT); 

Remember: 
“S” is for dataspace, 
“T” is for datatype, 
“D” is for dataset! 

local_np = 2, 
part_offset = 3, 
total_particles = 10,

Npart_props = 8
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Storing Particle Data with Hyperslabs (2 of 2) 

hsize_t start_2d[2] = {0, 0}, 
       stride_2d[1] = {1, 1}; 

hsize_t count_2d[2] = {local_np, 

                       npart_props}; 

/* Step 2: setup hyperslab for  

   dataset in file */ 

start_2d[0]  = part_offset; /* different for each process */ 

status = H5Sselect_hyperslab(dspace, 
                   H5S_SELECT_SET, 
                   start_2d, stride_2d, count_2d, NULL); 

dataspace from 
last slide 

local_np = 2, 
part_offset = 3, 
total_particles = 10,

Npart_props = 8


-  Hyperslab selection similar to MPI-IO file view 
-  Selections don’t overlap in this example (would be bad if writing!) 
-  H5SSelect_none() if no work for this process  
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Collectively Writing Particle Data 

/* Step 1: specify collective I/O */ 

dxfer_template = H5Pcreate(H5P_DATASET_XFER); 

ierr = H5Pset_dxpl_mpio(dxfer_template, 
H5FD_MPIO_COLLECTIVE); 

/* Step 2: perform collective write */ 

status = H5Dwrite(dataset, 
               H5T_NATIVE_DOUBLE, 
               memspace, 
               dspace, 
               dxfer_template, 
               particles); 

“P” is for property list; 
tuning parameters 

dataspace 
describing memory, 

 could also use a 
hyperslab 

dataspace describing region 
in file, with hyperslab from 

previous two slides Remember: 
“S” is for dataspace, 
“T” is for datatype, 
“D” is for dataset! 
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Inside HDF5 

  MPI_File_open used to open file 
  Because there is no “define” mode, file layout is 

determined at write time 
  In H5Dwrite:  

–  Processes communicate to determine file layout 
•  Process 0 performs metadata updates 

–  Call MPI_File_set_view 
–  Call MPI_File_write_all to collectively write 

•  Only if this was turned on (more later) 
  Memory hyperslab could have been used to define 

noncontiguous region in memory 
  In FLASH application, data is kept in native format and 

converted at read time (defers overhead) 
–  Could store in some other format if desired 

  At the MPI-IO layer: 
–  Metadata updates at every write are a bit of a bottleneck 

•  MPI-IO from process 0 introduces some skew 
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h5perf: HDF5 Benchmark 

 Written by HDF5 team 
 Provides a comparison of peak performance 

through the various interfaces 
–  A little artificial; the interfaces are really used for 

different purposes 
 Similar to IOR, in that it offers APIs for parallel 

HDF5, MPI-IO, and POSIX 
–  Can vary block size, transfer size, number of data sets 

per file, and size of each data set  
–  Optional dataset chunking (not default) 
–  Collective and independent I/O options 

 Contiguous I/O 
 1-32 clients (open-close time included) 
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H5perf Write Results 
 On Lustre: 

–  POSIX and independent MPI-IO have 
similar performance (expected) 

–  Collective MPI-IO and HDF5 lose 
significant performance 
•  Big, aligned blocks don’t benefit from collective 

I/O optimizations 
 On GPFS: 

–  POSIX significantly faster than MPI-IO 
(?) 

–  All other results are tightly grouped 
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H5perf Read Results 
  Locking and HEC don’t play well 
 Much larger spread between 

interfaces than in write cases 
  Collective I/O isn’t a win when 

you’re doing big block I/O at these 
scales 
–  Might help at very large scale to 

better coordinate access 
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Graphic from A. Siegel, ANL 

FLASH Astrophysics I/O Kernel 

 Written by FLASH team 
 Simulation of the I/O 

performed by the FLASH 
application 

 We’ll show both “checkpoint” 
and “plotfile with corners” 
results 
–  Checkpoints are full dumps necessary for restart 
–  Plotfiles are smaller files used for visualization 

 Fixed number of blocks per process 
 Looking at relative performance of HDF5 and PnetCDF 

–  Also absolute time to perform operations on these systems 
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FLASH I/O Benchmark Results 

 Your mileage my vary! 
 PnetCDF slower for 

checkpoints on Lustre, PVFS 
–  PnetCDF uses collective MPI-IO calls by 

default 

 PnetCDF considerably faster 
on GPFS 

–  Collective I/O not penalized 



The netCDF-4 Effort 

Thanks to Quincey Koziol (HDF 
group), Russ Rew (UCAR), and Ed 
Hartnett (UCAR) for helping ensure 
the accuracy of this material.   
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netCDF-4 

  Joint effort between Unidata (netCDF) and NCSA (HDF5)‏ 
–  Initial effort NASA funded.   
–  Ongoing development Unidata/UCAR funded.  

  Combine netCDF and HDF5 aspects 
–  HDF5 file format (still portable, self-describing)‏ 
–  netCDF API 

  Features 
–  Parallel I/O 
–  C, Fortran, and Fortran 90 language bindings (C++ in development)‏ 
–  per-variable compression 
–  multiple unlimited dimensions 
–  higher limits for file and variable sizes 
–  backwards compatible with “classic” datasets 
–  Groups 
–  Compound types  
–  Variable length arrays 
–  Data chunking and compression (parallel reads only – serial writes) 



NetCDF 4 API Summary 

   nc_create_par("demo", NC_MPIIO|NC_NETCDF4,  
    MPI_COMM_WORLD, MPI_INFO_NULL, &ncfile); 

–  New flag ‘NC_NETCDF4’; MPI Communicator, Info 
   nc_open_par("demo", NC_MPIIO,  
      MPI_COMM_WORLD, MPI_INFO_NULL, &ncfile); 

–  Can select POSIX (NC_MPIPOSIX) or MPI-IO (NC_MPIIO) 
   nc_var_par_access(ncfile, varid, NC_COLLECTIVE); 

–  Enable/disable collective I/O access  (enabled by default).   
  No longer need “send-to-master” model.  (very pnetcdf-like) 
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Comparing PnetCDF and netCDF-4 
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 netCDF-4: parallel access through new function 
calls (_par) 
–  Open, create take MPI hints (like PnetCDF) 
–  Collective I/O by default (like PnetCDF) 
–  Same routine can be either independent or collective 

depending on mode (like HDF5) 
–  HDF5 tools understand netCDF-4 datasets 

Parallel netCDF netCDF-4 
ncmpi_open nc_open_par 
ncmpi_create nc_create_par 
ncmpi_enddef nc_enddef 
ncmpi_def_dim nc_def_dim 
ncmpi_put_vara_float_all nc_put_vara_float  
ncmpi_begin_indep_data nc_var_par_access 
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netCDF-4 wrapup 

 Released in June 2008 
 Similarities to both HDF5 and Parallel netCDF 

–  HDF5: additional routine to toggle collective vs. 
independent 

–  PnetCDF: takes MPI_Comm and MPI_Info as part of 
open/create calls 

–  HDF5 tools understand netCDF-4 datasets 
 More information: 

–  http://www.unidata.ucar.edu/software/netcdf/netcdf-4/ 
–  Muqun Yang, “Performance Study of Parallel 

NetCDF4 in ROMS”, NCSA HDF group, June 30th, 
2006 



The ADaptable IO System 
(ADIOS) 

Thanks to Scott Klasky (ORNL) for 
providing background material on 
ADIOS. 
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ADaptable IO System (ADIOS) 

The goal of ADIOS is to create an easy and efficient I/O 
interface that hides the details of I/O from computational 
science applications: 
 Operate across multiple HPC architectures and parallel 

file systems 
–  Blue Gene, Cray, IB-based clusters 
–  Lustre, PVFS2, GPFS, Panasas, PNFS 

 Support many underlying file formats and interfaces 
–  MPI-IO, POSIX, HDF5, netCDF 
–  Facilitates switching underlying file formats to reach 

performance goals 
 Cater to common I/O patterns 

–  Restarts, analysis, diagnostics 
–  Different combinations provide different levels of IO 

performance 
 Compensate for inefficiencies in the current I/O 

infrastructures 
163 



ADIOS Binary Packed (BP) File Format 

Defers translation into portable format 
to attain high performance at runtime. 
Accelerates writing from large numbers 
of processes through a log-like storage 
format: 
 Each process writes independently 
 Coordinate only twice 

–  Once at start to determine writing 
locations 

–  Once at end for metadata 
collection 

 Move the “header” to the end to aid 
in alignment 
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Lightweight Application 
Characterization with Darshan  

Thanks to Phil Carns (carns@mcs.anl.gov) for 
providing background material on Darshan. 
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Darshan Goals 

 Capture application-level behavior 
–  Both POSIX and MPI-IO 
–  Portable across file systems and hardware 

 Transparent to users 
–  Negligible performance impact 
–  No source code changes 

 Leadership-class scalability 
–  100,000+ processes 

 Scalability tactics: 
–  Bounded memory footprint 
–  Minimize redundant information 
–  Avoid shared resources at run time 
–  Scalable algorithms to aggregate information 
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The Darshan Approach 

 Use PMPI and ld wrappers to intercept I/O functions 
–  Requires re-linking, but no code modification 
–  Can be transparently included in mpicc 
–  Compatible with a variety of compilers 

 Record statistics independently at each process 
–  Compact summary rather than verbatim record 
–  Independent data for each file 

 Collect, compress, and store results at shutdown time 
–  Aggregate shared file data using custom MPI reduction operator 
–  Compress remaining data in parallel with zlib 
–  Write results with collective MPI-IO 
–  Result is a single gzip-compatible file containing characterization 

information 
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Example Statistics (per file) 
 Counters: 

–  POSIX open, read, write, seek, stat, etc. 
–  MPI-IO nonblocking, collective, independent, etc. 
–  Unaligned, sequential, consecutive, strided access 
–  MPI-IO datatypes and hints 

 Histograms: 
–  access, stride, datatype, and extent sizes 

 Timestamps: 
–   open, close, first I/O, last I/O 

 Cumulative bytes read and written 
 Cumulative time spent in I/O and metadata operations 
 Most frequent access sizes and strides 
 Darshan records 150 integer or floating point parameters 

per file, plus job level information such as command line, 
execution time, and number of processes.  
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Job Summary 
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  Job summary tool shows 
characteristics “at a glance” 

  MADBench2 example 
  Shows time spent in read, write, 

and metadata 
  Operation counts, access size 

histogram, and access pattern 

  Early indication of I/O behavior 
and where to explore in further 

  FIXME – the charts are pretty 
hard to read 



Chombo I/O Benchmark 

 Why does the I/O take so long in this case? 
 Why isn’t it busy writing data the whole time? 

  Checkpoint writes from AMR 
framework 

  Uses HDF5 for I/O 
  Code base is complex 
  512 processes 
  18.24 GB output file 
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Chombo I/O Benchmark 
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  Consecutive: 49.25% 
  Sequential: 99.98% 
  Unaligned in file: 99.99% 
  Several recurring regular stride patterns 

 Many write operations, 
with none over 1 MB in 
size 

 Most common access size 
is 28,800 (occurs 15622 
times) 

 No MPI datatypes or 
collectives 

 All processes frequently 
seek forward between 
writes 



Darshan Summary 

 Scalable tools like Darshan can yield useful insight 
–  Identify characteristics that make applications successful 
–  Identify problems to address through I/O research 

 Petascale performance tools require special 
considerations 
–  Target the problem domain carefully to minimize amount of data 
–  Avoid shared resources 
–  Use collectives where possible 

 For more information: 
http://www.mcs.anl.gov/research/projects/darshan 
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I/O in Parallel Volume 
Rendering 

Thanks to Tom Peterka (ANL) and 
Hongfeng Yu and Kwan-Liu Ma (UC 
Davis) for providing the code on 
which this material is based. 
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Parallel Volume Rendering  

  Supernova model with focus 
on core collapse 

  Parallel rendering techniques 
scale to 16k cores on Argonne 
Blue Gene/P 

  Produce a series of time steps 
  11203 elements (~1.4 billion)‏ 
  Structured grid  
  Simulated and rendered on 

multiple platforms, sites 
  I/O time now largest 

component of runtime 

# of Cores 
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The I/O Code (essentially): 
    MPI_Init(&argc, &argv); 
    ncmpi_open(MPI_COMM_WORLD, argv[1], NC_NOWRITE,  
  info, &ncid));   
    ncmpi_inq_varid(ncid, argv[2], &varid); 
    buffer =calloc(sizes[0]*sizes[1]*sizes[2],sizeof(float)); 
    for (i=0; i<blocks; i++) { 
       decompose(rank, nprocs, ndims, dims, starts, sizes); 
       ncmpi_get_vara_float_all(ncid, varid,  
            starts, sizes, buffer); 
    } 
    ncmpi_close(ncid)); 
    MPI_Finalize(); 

  Read-only workload: no switch between define/data mode 
 Omits error checking, full use of inquire (ncmpi_inq_*) routines 
  Collective I/O of noncontiguous (in file) data 
  “black box” decompose function: 

–   divide 1120^3 elements into roughly equal mini-cubes 
–  “face-wise” decomposition ideal for I/O access, but poor fit for volume 

rendering algorithms 
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Volume Rendering and pNetCDF 

 Original data: netCDF formatted 
  Two approaches for I/O 

–  Pre-processing: extract each variable to separate file 
•  Lengthy, duplicates data 

–  Native: read data in parallel, on-demand from dataset 
• Skip preprocessing step but slower than raw 

 Why so slow? 
–  5 large “record” variables in  

a single netcdf file 
•  Interleaved on per-record basis 

–  Bad interaction with default 
MPI-IO parameters Record variable interleaving is performed 

in N-1 dimension slices, where N is the 
number of dimensions in the variable. 
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Access Method Comparison 

 MPI-IO hints matter 
  HDF5: many small metadata 

reads 
  Interleaved record format: bad 

news 

API time (s) accesses read data (MB) efficency 
MPI (raw data) 11.388 960 7126 75.20% 
PnetCDF (no hints) 36.030 1863 24200 22.15% 
PnetCDF (hints) 18.946 2178 7848 68.29% 
HDF5 16.862 23450 7270 73.72% 
PnetCDF (beta) 13.128 923 7262 73.79% 
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Analysis: MPI-IO to extracted data 

  2D depiction of file accesses 
  Pre-processing extracted variable 
  5GB file 

  15 rounds of I/O  
  Round i+1 overlaps slightly 

with round i (75% efficiency)‏ 

of
fs

et
 

time 
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Analysis: Parallel netCDF, no hints 

  Block depiction of 28 GB file 
  Record variable scattered 
  Reading in way too much data! 

  Y axis larger here 
  Default “cb_buffer_size” hint not 

good for interleaved netCDF record 
variables 

of
fs

et
 

time 
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Analysis: Parallel netCDF, hints 

  With tuning, much less reading 
  Better efficiency, but still short of 

MPI-IO 

  Still some overlap 
  “cb_buffer_size” now size of one 

netCDF record 
  Better efficiency, at slight perf cost 

of
fs

et
 

time 
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Analysis: Parallel HDF5 

  Different file format, different 
characteristics 

  Data exhibits spatial locality 

  Thousands of metadata reads 
–  All clients read MD from file 

  Reads could be batched. Not sure 
why not (implementation detail). 

of
fs

et
 

time 
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Analysis: new Parallel netCDF 

  Development effort to relax netCDF 
file format limits 

  No need for record variables 
  Data nice and compact like MPI-IO 

and HDF5 

  Rank 0 reads header, broadcasts 
to others 
–  Much more scalable approach 

  Approaching MPI-IO efficiency 
  Maintains netCDF benefits 

–  Portable, self-describing, etc. 

of
fs

et
 

time 



Future Storage 
Technologies  
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Storage Futures 

 pNFS  
–  An extension to the NFSv4 file system protocol 

standard that allows direct, parallel I/O between 
clients and storage devices 

–  Eliminates the scaling bottleneck found in today’s 
NAS systems 

–  Supports multiple types of back-end storage systems, 
including traditional block storage, other file servers, 
and object storage systems 

 FLASH and other non-volatile devices 
–  New level in storage hierarchy 
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Why a Standard for Parallel I/O? 
 NFS is the only network file system standard 

–  Proprietary file systems have unique advantages, but can 
cause lock-in 

 NFS widens the playing field 
–  Panasas, IBM, EMC want to bring their experience in large 

scale, high-performance file systems into the NFS 
community.  Sun and NetApp want a standard HPC solution. 

–  Broader market benefits vendors 
–  More competition benefits customers 

 What about open source 
–  NFSv4 Linux client is very important for NFSv4 adoption, 

and therefore pNFS 
–  Still need vendors that are willing to do the heavy lifting 

required in quality assurance for mission critical storage 
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NFSv4 and pNFS 

 NFS created in ’80s to share data among 
engineering workstations 

 NFSv3 widely deployed 
 NFSv4 several years in the making, lots of new stuff 

–  Integrated Kerberos (or PKI) user authentication 
–  Integrated File Locking and Open Delegations (stateful 

server!) 
–  ACLs (hybrid of Windows and POSIX models) 
–  Official path to add (optional) extensions 

 NFSv4.1 adds even more 
–  pNFS for parallel IO 
–  Directory Delegations for efficiency 
–  RPC Sessions for robustness, better RDMA support 
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Whence pNFS 
 Gary Grider (LANL) and Lee Ward (Sandia) 

–  Spoke with Garth Gibson about the idea of parallel IO for NFS in 
2003 

 Garth Gibson (Panasas/CMU) and Peter Honeyman (UMich/
CITI) 
–  Hosted pNFS workshop at Ann Arbor in December 2003 

 Garth Gibson, Peter Corbett (NetApp), Brent Welch 
–  Wrote initial pNFS IETF drafts, presented to IETF in July and 

November 2004 
 Andy Adamson (CITI), David Black (EMC), Garth Goodson 

(NetApp), Tom Pisek (Sun), Benny Halevy (Panasas), Dave 
Noveck (NetApp), Spenser Shepler (Sun), Brian Pawlowski 
(NetApp), Marc Eshel (IBM), (Many Others …) 
–  Dean Hildebrand (CITI) did pNFS prototype based on PVFS 
–  NFSv4 working group commented on drafts in 2005, folded pNFS 

into the 4.1 minorversion draft in 2006 
 pNFS approved by IETF December 2008 

–  expect RFC in 2009 
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“Islands of Storage” 

Filer Heads create I/O performance bottlenecks 

Multiple instances create management challenges 

Filer 
Heads 

NFS NFS NFS NFS 

Filer 
Heads 

Filer 
Heads 

Filer 
Heads 

Traditional NAS 
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“Bridged Islands of Storage” 

“In-band” Filer Head protocol creates I/O performance bottlenecks 

Load balancing becomes management & performance issue 

Clustered 
Filer Heads 

NFS NFS NFS NFS 

Clustered NAS 
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“Pool of Parallel Clustered Storage” 

I/O Performance Bottlenecks and Management Challenges 
Solved as Filers Removed from Data Path 

…direct, parallel data paths… 

Metadata 

Management 

Parallel IO 
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pNFS: Standard Storage Clusters 

 pNFS is an extension to the Network File System v4 
protocol standard 

 Allows for parallel and direct access 
–  From Parallel Network File System clients 
–  To Storage Devices over multiple storage protocols 
–  Moves the Network File System server out of the data path 

pNFS 
Clients 

Block (FC) / 
Object (OSD) / 

File (NFS) 
Storage NFSv4.1 Server 

data 
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The pNFS Standard 

 The pNFS standard defines the NFSv4.1 protocol 
extensions between the server and client 

 The I/O protocol between the client and storage is 
specified elsewhere, for example: 
–  SCSI Block Commands (SBC) over Fibre Channel (FC) 
–  SCSI Object-based Storage Device (OSD) over iSCSI 
–  Network File System (NFS) 

 The control protocol between the server and storage 
devices is also specified elsewhere, for example: 
–  SCSI Object-based Storage Device (OSD) over iSCSI 

Client Storage 

MetaData Server 
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pNFS Layouts 
 Client gets a layout from the NFS Server 
 The layout maps the file onto storage devices and 

addresses 
 The client uses the layout to perform direct I/O to 

storage 
 At any time the server can recall the layout 
 Client commits changes and returns the layout when it’s 

done 
 pNFS is optional, the client can always use regular 

NFSv4 I/O 
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pNFS Client 

 Common client for different storage back ends 
 Wider availability across operating systems 
 Fewer support issues for storage vendors 
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Client Apps 

Layout 
Driver 

pNFS Client 

pNFS Server 

Cluster 
Filesystem 

1. SBC (blocks) 
2. OSD (objects) 
3. NFS (files)

4. PVFS2 (files) 
5. Future backend…


Layout metadata 
grant & revoke


NFSv4.1




pNFS is not… 

 Improved cache consistency 
–  NFS has open-to-close consistency enforced by client polling of 

attributes 
–  NFSv4.1 directory delegations can reduce polling overhead 

 Perfect POSIX semantics in a distributed file system 
–  NFS semantics are good enough (or, all we’ll give you) 
–  But note also the POSIX High End Computing Extensions 

Working Group 
•  http://www.opengroup.org/platform/hecewg/ 

 Clustered metadata 
–  Not a server-to-server protocol for scaling metadata 
–  But, it doesn’t preclude such a mechanism 
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Is pNFS Enough? 

 Standard for out-of-band metadata 
–  Great start to avoid classic server bottle neck 
–  NFS has already relaxed some semantics to favor 

performance 
–  But there are certainly some workloads that will still 

hurt 
 Standard framework for clients of different 

storage backends 
–  Files 
–  Objects 
–  Blocks 
–  PVFS2 
–  Your project… (e.g., dcache.org) 
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pNFS Status 

 Implementation interoperability continues 
–  San Jose Connect-a-thon March ’06, February ’07, May ’08, June ‘09 
–  Ann Arbor NFS Bake-a-thon September ’06, October ’07 
–  Dallas pNFS inter-op, June ’07, Austin February ’08, Sept ’08, October ‘09 

 Server vendors waiting for Linux client 
–  Sun, NetApp, EMC, IBM, Panasas, … 
–  2.6.30 
•  exofs object storage file system (local) and iSCSI/OSDv2 

–  2.6.31 
• most of nfsv4.1: sessions, 4.1 as an option, no pnfs yet 
•  server back channel is absent 

–  2.6.32  
• Finish nfsv4.1 including server callbacks 

–  2.6.33 
• Merge window opens around the end of the year 

–  Goal to complete patch adoption by Q3 2010 
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How to use pNFS today 

 Up-to-date GIT tree from Linux developers 
–  bhalevy@panasas.com manages the source trees 

 RedHat fedora RPMs that include pNFS 
–  steved@redhat.com builds experimental packages 

 pNFS mailing list, pnfs@linux-nfs.org  
 http://open-osd.org 

–  Useful to get to OSD target, the user level program 
–  Exofs uses kernel initiator, need the target 
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How to use pNFS today 

 Benny's git tree: 
git://linux-nfs.org/~bhalevy/linux-pnfs.git 

 The the kernel rpms can be found at: 
http://fedorapeople.org/~steved/repos/pnfs/i686 
http://fedorapeople.org/~steved/repos/pnfs/x86_64 

 The source rpm can be found at: 
http://fedorapeople.org/~steved/repos/pnfs/source/ 

 Bug database 
 https://bugzilla.linux-nfs.org/index.cgi 

 OSD target 
http://open-osd.org/ 
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Key pNFS Participants 

 Panasas (Objects) 
 ORNL  and ESSC/DoD funding Linux pNFS development 
 Network Appliance (Files over NFSv4) 
  IBM (Files, based on GPFS) 
 EMC (Blocks, HighRoad MPFSi) 
 Sun (Files over NFSv4) 
 U of Michigan/CITI (Linux maintainers, EMC and Microsoft 

contracts) 
 LSI – open source block-based server 
 DESY – Java-based implementation 
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Prototype PNFS Performance 
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Prototype PNFS Performance 

202 



Panasas DirectFlow Performance 
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FLASH and Nonvolatile 
Storage 
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The problem with rotating media 

 Areal density increases by 40%/year 
–  Per drive capacity increases by 70% to 100% per year 
–  2TB “enterprise SATA” drives available in 2009 
–  3TB desktop drives available first half of 2010 
–  Drive vendors prepared to continue like this for years to come 

 Drive interface speed increases by 10% per year 
–  Takes longer and longer to completely read each new 

generation of drive 
 Seek times and rotational speeds not increasing all that 

much 
–  15,000 RPM and 2.5 ms/sec still the norm for high end 
–  Significant power problems with higher RPM and faster seeks 

•  Aerodynamic drag and friction loads go as the square of speed 
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FLASH is… 
 Non-volatile 

–  Each bit is stored in a “floating gate” that holds value without power 
–  Electrons can leak, so shelf life and write count is limited 

 Page-oriented 
–  Read, write, and erase operations apply to large chunks 
–  Smaller (e.g., 4K) read/write block based on addressing logic 
–  Larger (e.g., 256K) erase block to amortize the time it takes to erase 

 Medium speed 
–  Slower than DRAM 
–  Faster than disks for reading 
–  Write speed dependent on workload 

 Relatively cheap 
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FLASH Reliability 

 SLC – Single Level Cell 
–  One threshold, one bit 
–  105 to 106 write cycles per 

page 
 MLC – Multi Level Cell 

–  Multiple thresholds, multiple 
bits (2 bits now, 3 & 4 soon) 

–  N bits requires 2N Vt levels 
–  104 write cycles per page 
–  Denser and cheaper, but 

slower and less reliable 
 Wear leveling is critical 

–  Pre-erase blocks before 
writing is required 

–  Page map indirection allows 
shuffling of pages to do wear 
leveling 
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FLASH Speeds 
 Samsung 4GB Device 

–  16K erase blocks 
100 
usec 

Transfer 4K over 
serial interface 

40 MB/sec 

25 usec Load 4K register 
from Flash 

160 MB/
sec 

125 
usec 

Read latency 32 MB/sec 

200 
usec 

Store 4K register 
to FLASH 

20 MB/sec 

225 
usec 

Write latency 16 MB/sec 

1.5 
msec 

Erase 256K block 170 MB/
sec 

1.725 
msec 

Worse case write 2.3 MB/sec 

• Write performance heavily dependent 
on workload and wear leveling algorithms 
• Writes are slower with less free space 
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256K  
block 

4K  
pages 

4K  
register 

Serial interface 

0 
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FLASH in the Storage Hierarchy 

 On the compute nodes 
–  High reliability local storage for OS partition 
–  Local cache for memory checkpoints ? 

• Device write speeds range from 4 MB/sec for a cheap USB, 
to 80 or 100 MB/sec for MTron or Zeus, up to 600 MB/sec for 
Fusion IO 

–  One Fusion IO SSD (Solid State Disk) could double 
cost of compute node 

 On the storage server 
–  Metadata storage 
–  Low latency log device 
–  Replacement for NVRAM ?  Probably not enough 

write bandwidth to absorb all the write data 
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Phase Change Memory 
 GST: Germanium-Antimony-Tellurium Chalcogenide glass 

–  Crystalline vs. Amorphous structure has different resistance 
–  Write a bit by heating to two different temperatures 

 DRAM-like device – no block erase required 
 Slow (like FLASH) writes, but permanent 

–  No leakage, but wear leveling still an issue 

210 

Courtesy http://en.wikipedia.org/wiki/User:Cyferz 

 Read speed 2x slower than 
DRAM today, and improving  

 Manufacturability advantage 
over DRAM and FLASH when 
feature size gets small (20nm 
and below) 

 Storage Devices in 2010 
 Main memory by 2015 ? 



Wrapping Up 

 We've covered a lot of ground in a short time 
–  Very low-level, serial interfaces 
–  High-level, hierarchical file formats 

 Storage is a complex hardware/software system 

 There is no magic in high performance I/O 
–  Lots of software is available to support computational science 

workloads at scale 
–  Knowing how things work will lead you to better performance 

 Using this software (correctly) can dramatically improve 
performance (execution time) and productivity 
(development time) 

211 



212 

Printed References 

  John May, Parallel I/O for High Performance Computing, 
Morgan Kaufmann, October 9, 2000. 
–  Good coverage of basic concepts, some MPI-IO, HDF5, and 

serial netCDF 
–  Out of print? 

  William Gropp, Ewing Lusk, and Rajeev Thakur, Using 
MPI-2: Advanced Features of the Message Passing 
Interface, MIT Press, November 26, 1999. 
–  In-depth coverage of MPI-IO API, including a very detailed 

description of the MPI-IO consistency semantics 
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On-Line References (1 of 4) 
 netCDF and netCDF-4 

–  http://www.unidata.ucar.edu/packages/netcdf/ 
 PnetCDF 

–  http://www.mcs.anl.gov/parallel-netcdf/ 
 ROMIO MPI-IO 

–  http://www.mcs.anl.gov/romio/ 
 HDF5 and HDF5 Tutorial 

–  http://www.hdfgroup.org/ 
–  http://hdf.ncsa.uiuc.edu/HDF5/ 
–  http://hdf.ncsa.uiuc.edu/HDF5/doc/Tutor/index.html 

 POSIX I/O Extensions 
–  http://www.opengroup.org/platform/hecewg/ 

 Darshan I/O Characterization Tool 
–  http://www.mcs.anl.gov/research/projects/darshan 
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On-Line References (2 of 4) 

  PVFS 
http://www.pvfs.org/ 

  Panasas 
http://www.panasas.com/ 

  Lustre 
http://www.lustre.org/ 

  GPFS 
http://www.almaden.ibm.com/storagesystems/file_systems/GPFS/ 
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On-Line References (3 of 4) 
 LLNL I/O tests (IOR, fdtree, mdtest) 

–  http://www.llnl.gov/icc/lc/siop/downloads/download.html 
 Parallel I/O Benchmarking Consortium (noncontig, mpi-tile-

io, mpi-md-test) 
–  http://www.mcs.anl.gov/pio-benchmark/ 

 FLASH I/O benchmark 
–  http://www.mcs.anl.gov/pio-benchmark/ 
–  http://flash.uchicago.edu/~jbgallag/io_bench/ (original version) 

 b_eff_io test 
–  http://www.hlrs.de/organization/par/services/models/mpi/b_eff_io/ 

 mpiBLAST 
–  http://www.mpiblast.org 



On Line References (4 of 4) 

 NFS Version 4.1 
–  draft-ietf-nfsv4-minorversion1-26.txt 
–  draft-ietf-nfsv4-pnfs-obj-09.txt 
–  draft-ietf-nfsv4-pnfs-block-09.txt 

 pNFS Problem Statement 
–  Garth Gibson (Panasas), Peter Corbett (Netapp), 

Internet-draft, July 2004 
–  http://www.pdl.cmu.edu/pNFS/archive/gibson-pnfs-problem-

statement.html 

 Linux pNFS Kernel Development 
–  http://www.citi.umich.edu/projects/asci/pnfs/linux 
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