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Abstract 
The Panasas file system uses parallel and redundant 
access to object storage devices (OSDs), per-file 
RAID, distributed metadata management, consistent 
client caching, file locking services, and internal cluster 
management to provide a scalable, fault tolerant, high 
performance distributed file system. The clustered 
design of the storage system and the use of client- 
driven RAID provide scalable performance to many 
concurrent file system clients through parallel access 
to file data that is striped across OSD storage nodes. 
RAID recovery is performed in parallel by the cluster  
of metadata managers, and declustered data  
placement yields scalable RAID rebuild rates as the 
storage system grows larger. This paper presents 
performance measures of I/O, metadata, and recovery 
operations for storage clusters that range in size from 
10 to 120 storage nodes, 1 to 12 metadata nodes, and 
with file system client counts ranging from 1 to 100 
compute nodes. Production installations are as large  
as 500 storage nodes, 50 metadata managers, and 
5000 clients.

1 Introduction 
Storage systems for high performance computing 
environments must be designed to scale in performance 
so that they can be configured to match the required 
load. Clustering techniques are often used to provide 
scalability. In a storage cluster, many nodes each control 
some storage, and the overall distributed file system 
assembles the cluster elements into one large, seamless 
storage system. The storage cluster can be hosted on 
the same computers that perform data processing, or 
they can be a separate cluster that is devoted entirely 
to storage and accessible to the compute cluster via a 
network protocol.

The Panasas storage system is a specialized storage 
cluster, and this paper presents its design and a 
number of performance measurements to illustrate the 
scalability. The Panasas system is a production system 
that provides file service to some of the largest compute  
clusters in the world, in scientific labs, in seismic data 
processing, in digital animation studios, in computational 

fluid dynamics, in semiconductor manufacturing, and 
in general purpose computing environments. In these 
environments, hundreds or thousands of file system 
clients share data and generate very high aggregate I/O 
load on the file system. The Panasas system is designed 
to support several thousand clients and storage 
capacities in excess of a petabyte.

The unique aspects of the Panasas system are its use 
of per-file, client-driven RAID, its parallel RAID rebuild, 
its treatment of different classes of metadata (block, file, 
system) and a commodity parts based blade hardware 
with integrated UPS. Of course, the system has many 
other features (such as object storage, fault tolerance, 
caching and cache consistency, and a simplified 
management model) that are not unique, but are 
necessary for a scalable system implementation.

2 Panasas File System Background
This section makes a brief tour through the system to 
provide an overview for the following sections. The 
two overall themes to the system are object storage, 
which affects how the file system manages its data, and 
clustering of components, which allows the system to 
scale in performance and capacity.

The storage cluster is divided into storage nodes and 
manager nodes at a ratio of about 10 storage nodes 
to 1 manager node, although that ratio is variable. The 
storage nodes implement an object store, and are 
accessed directly from Panasas file system clients 
during I/O operations. The manager nodes manage 
the overall storage cluster, implement the distributed 
file system semantics, handle recovery of storage node 
failures, and provide an exported view of the Panasas 
file system via NFS and CIFS. Figure 1 gives a basic 
view of the system components.

2.1 Object Storage
An object is a container for data and attributes; it is 
analogous to the inode inside a traditional UNIX file 
system implementation. Specialized storage nodes 
called Object Storage Devices (OSD) store objects 
in a local OSDFS file system. The object interface 
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addresses objects in a two-level (partition ID/object ID) 
namespace. The OSD wire protocol provides byte-
oriented access to the data, attribute manipulation, 
creation and deletion of objects, and several other 
specialized operations [OSD04]. We use an iSCSI 
transport to carry OSD commands that are very similar 
to the OSDv2 standard currently in progress within 
SNIA and ANSI-T10 [SNIA].

The Panasas file system is layered over the object 
storage. Each file is striped over two or more objects to 
provide redundancy and high bandwidth access. The 
file system semantics are implemented by metadata 
managers that mediate access to objects from clients 
of the file system. The clients access the object 
storage using the iSCSI/OSD protocol for Read and 
Write operations. The I/O operations proceed directly 
and in parallel to the storage nodes, bypassing the 
metadata managers. The clients interact with the out-
of-band metadata managers via RPC to obtain access 
capabilities and location information for the objects that 
store files. The performance of striped file access is 
presented later in the paper.

Figure 1: Panasas System Components 

Object attributes are used to store file-level attributes, 
and directories are implemented with objects that 
store name to object ID mappings. Thus the file system 
metadata is kept in the object store itself, rather than 
being kept in a separate database or some other form 
of storage on the metadata nodes. Metadata operations 
are described and measured later in this paper.

2.2 System Software Components 
The major software subsystems are the OSDFS object 
storage system, the Panasas file system metadata 
manager, the Panasas file system client, the NFS/CIFS 
gateway, and the overall cluster management system. 

• The Panasas client is an installable kernel module 
that runs inside the Linux kernel. The kernel module 
implements the standard VFS interface, so that the 
client hosts can mount the file system and use a 
POSIX interface to the storage system. We don’t 
require any patches to run inside the 2.4 or 2.6 
Linux kernel, and have tested with over 200 Linux 
variants. 

• Each storage cluster node runs a common platform 
that is based on FreeBSD, with additional services 
to provide hardware monitoring, configuration 
management, and overall control.

• The storage nodes use a specialized local file 
system (OSDFS) that implements the object 
storage primitives. They implement an iSCSI target 
and the OSD command set. The OSDFS object 
store and iSCSI target/OSD command processor 
are kernel modules. OSDFS is concerned with 
traditional block-level file system issues such as 
efficient disk arm utilization, media management 
(i.e., error handling), high throughput, as well as the 
OSD interface.

• The cluster manager (SysMgr) maintains the global 
configuration, and it controls the other services 
and nodes in the storage cluster. There is an 
associated management application that provides 
both a command line interface (CLI) and an HTML 
interface (GUI). These are all user level applications 
that run on a subset of the manager nodes. The 
cluster manager is concerned with membership in 
the storage cluster, fault detection, configuration 
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management, and overall control for operations like 
software upgrade and system restart [Welch07].

• The Panasas metadata manager (PanFS) 
implements the file system semantics and 
manages data striping across the object storage 
devices. This is a user level application that runs 
on every manager node. The metadata manager 
is concerned with distributed file system issues 
such as secure multi-user access, maintaining 
consistent file- and object-level metadata, client 
cache coherency, and recovery from client, storage 
node, and metadata server crashes. Fault tolerance 
is based on a local transaction log that is replicated 
to a backup on a different manager node.

• The NFS and CIFS services provide access to 
the file system for hosts that cannot use our Linux 
installable file system client. The NFS service is 
a tuned version of the standard FreeBSD NFS 
server that runs inside the kernel. The CIFS 
service is based on Samba and runs at user level. 
In turn, these services use a local instance of the 
file system client, which runs inside the FreeBSD 
kernel. These gateway services run on every 
manager node to provide a clustered NFS and 
CIFS service. 

2.3 Commodity Hardware Platform  
The storage cluster nodes are implemented as blades 
that are very compact computer systems made from 
commodity parts. The blades are clustered together 
to provide a scalable platform. Up to 11 blades fit into 
a 4U (7 inches) high shelf chassis that provides dual 
power supplies, a high capacity battery, and one or two 
16-port GE switches. The switches aggregate the GE 
ports from the blades into a 4 GE trunk. The 2nd switch 
provides redundancy and is connected to a 2nd GE port 
on each blade. The battery serves as a UPS and powers 
the shelf for a brief period of time (about five minutes) to 
provide orderly system shutdown in the event of a power 
failure. Any number of blades can be combined to create 
very large storage systems.

The OSD StorageBlade module and metadata manager 
DirectorBlade module use the same form factor blade 
and fit into the same chassis slots. The StorageBlade 
module contains a commodity processor, two disks, 

ECC memory, and dual GE NICs. The DirectorBlade 
module has a faster processor, more memory, dual GE 
NICs, and a small private disk. In addition to metadata 
management, DirectorBlades also provide NFS and 
CIFS service, and their large memory is used as a data 
cache when serving these protocols. Details of the 
different blades used in the performance experiments 
are given in Appendix I.

Any number of shelf chassis can be grouped into the 
same storage cluster. A shelf typically has one or two 
DirectorBlade modules and 9 or 10 StorageBlade 
modules. A shelf with 10 StorageBlade modules 
contains 5 to 15 TB of raw storage in 4U of rack space. 
Customer installations range in size from 1 shelf to 
around 50 shelves, although there is no enforced limit 
on system size.

While the hardware is essentially a commodity PC (i.e., 
no ASICs), there are two aspects of the hardware that 
simplified our software design. The first is the integrated 
UPS in the shelf chassis that makes all of main memory 
NVRAM. The metadata managers do fast logging to 
memory and reflect that to a backup with low latency 
network protocols. OSDFS buffers write data so it can 
efficiently manage block allocation. The UPS powers the 
system for several minutes to protect the system as it 
shuts down cleanly after a power failure. The metadata 
managers flush their logs to a local disk, and OSDFS 
flushes writes through to disk. The logging mechanism 
is described and measured in detail later in the paper. 
The system monitors the battery charge level, and will 
not allow a shelf chassis to enter service without an 
adequately charged battery to avoid data loss during 
back-to-back power failures.

The other important aspect of the hardware is that 
blades are a Field Replaceable Unit (FRU). Instead of 
trying to repair a blade, if anything goes wrong with the 
hardware, the whole blade is replaced. We settled on 
a two-drive storage blade as a compromise between 
cost, performance, and reliability. Having the blade as a 
failure domain simplifies our fault tolerance mechanisms, 
and it provides a simple maintenance model for system 
administrators. Reliability and data reconstruction are 
described and measured in detail later in the paper.
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3 Storage Management
Traditional storage management tasks involve 
partitioning available storage space into LUNs (i.e., 
logical units that are one or more disks, or a subset of a 
RAID array), assigning LUN ownership to different hosts, 
configuring RAID parameters, creating file systems 
or databases on LUNs, and connecting clients to the 
correct server for their storage. This can be a labor-
intensive scenario. We sought to provide a simplified 
model for storage management that would shield the 
storage administrator from these kinds of details and 
allow a single, part-time admin to manage systems that 
were hundreds of terabytes in size.

The Panasas storage system presents itself as a file 
system with a POSIX interface, and hides most of the 
complexities of storage management. Clients have a 
single mount point for the entire system. The /etc/fstab 
file references the cluster manager, and from 
that the client learns the location of the metadata  
service instances. The administrator can add storage 
while the system is online, and new resources are 
automatically discovered. To manage available storage, 
we introduced two basic storage concepts: a physical 
storage pool called a BladeSet, and a logical quota tree 
called a Volume.

The BladeSet is a collection of StorageBlade modules 
in one or more shelves that comprise a RAID fault 
domain. We mitigate the risk of large fault domains with 
the scalable rebuild performance described in Section 
4.2. The BladeSet is a hard physical boundary for the 
volumes it contains. A BladeSet can be grown at any 
time, either by adding more StorageBlade modules, or 
by merging two existing BladeSets together.

The Volume is a directory hierarchy that has a quota 
constraint and is assigned to a particular BladeSet. 
The quota can be changed at any time, and capacity is 
not allocated to the Volume until it is used, so multiple 
volumes compete for space within their BladeSet 
and grow on demand. The files in those volumes are 
distributed among all the StorageBlade modules in the 
BladeSet.

Volumes appear in the file system name space as 
directories. Clients have a single mount point for 
the whole storage system, and volumes are simply 
directories below the mount point. There is no need to 
update client mounts when the admin creates, deletes, 
or renames volumes.

Each Volume is managed by a single metadata manager. 
Dividing metadata management responsibility along 
volume boundaries (i.e., directory trees) was done 
primarily to keep the implementation simple. We figured 
that administrators would introduce volumes (i.e., quota 
trees) for their own reasons, and this would provide an 
easy, natural boundary. We were able to delay solving 
the multi-manager coordination problems created when 
a parent directory is controlled by a different metadata 
manager than a file being created, deleted, or renamed 
within it. We also had a reasonable availability model for 
metadata manager crashes; well-defined subtrees would 
go offline rather than a random sampling of files. The file 
system recovery check implementation is also simplified; 
each volume is checked independently (and in parallel 
when possible), and errors in one volume don’t affect 
availability of other volumes. Finally, clients bypass the 
metadata manager during read and write operations, 
so the metadata manager’s load is already an order of 
magnitude smaller than a traditional file server storing 
the same number of files. This reduces the importance 
of fine-grain metadata load balancing. That said, 
uneven volume utilization can result in uneven metadata 
manager utilization. Our protocol allows the metadata 
manager to redirect the client to another manager to 
distribute load, and we plan to exploit this feature in the 
future to provide finer-grained load balancing.

While it is possible to have a very large system with 
one BladeSet and one Volume, and we have customers 
that take this approach, we felt it was important for 
administrators to be able to configure multiple storage 
pools and manage quota within them. Our initial 
model only had a single storage pool: a file would be 
partitioned into component objects, and those objects 
would be distributed uniformly over all available storage 
nodes. Similarly, metadata management would be 
distributed by randomly assigning ownership of new 
files to available metadata managers. This is similar to 
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the Ceph model [Weil06]. The attraction of this model 
is smooth load balancing among available resources. 
There would be just one big file system, and capacity 
and metadata load would automatically balance. 
Administrators wouldn’t need to worry about running out 
of space, and applications would get great performance 
from large storage systems.

There are two problems with a single storage pool: the 
fault and availability model, and performance isolation 
between different users. If there are ever enough faults 
to disable access to some files, then the result would 
be that a random sample of files throughout the storage 
system would be unavailable. Even if the faults were 
transient, such as a node or service crash and restart, 
there will be periods of unavailability. Instead of having 
the entire storage system in one big fault domain, we 
wanted the administrator to have the option of dividing 
a large system into multiple fault domains, and of having 
a well defined availability model in the face of faults. In 
addition, with large installations the administrator can 
assign different projects or user groups to different 
storage pools. This isolates the performance and 
capacity utilization among different groups.

Our storage management design reflects a compromise 
between the performance and capacity management 
benefits of a large storage pool, the backup and restore 
requirements of the administrator, and the complexity 
of the implementation. In practice, our customers use 
BladeSets that range in size from a single shelf to more 
than 20 shelves, with the largest production Bladeset 
being about 50 shelves, or 500 StorageBlade modules 
and 50 DirectorBlade modules. The most common 
sizes, however, range from 5 to 10 shelves. While we 
encourage customers to introduce Volumes so the 
system can better exploit the DirectorBlade modules, we 
have customers that run large systems (e.g., 20 shelves) 
with a single Volume.

3.1 Automatic Capacity Balancing 
Capacity imbalance occurs when expanding a BladeSet 
(i.e., adding new, empty storage nodes), merging two 
BladeSets, and replacing a storage node following a 
failure. In the latter scenario, the imbalance is the result 

of our RAID rebuild, which uses spare capacity on every 
storage node rather than dedicating a specific “hot 
spare” node. This provides better throughput during 
rebuild (see section 4.2), but causes the system to have 
a new, empty storage node after the failed storage node 
is replaced. Our system automatically balances used 
capacity across storage nodes in a BladeSet using two 
mechanisms: passive balancing and active balancing.

Passive balancing changes the probability that a storage 
node will be used for a new component of a file, based 
on its available capacity. This takes effect when files 
are created, and when their stripe size is increased to 
include more storage nodes. Active balancing is done by 
moving an existing component object from one storage 
node to another, and updating the storage map for the 
affected file. During the transfer, the file is transparently 
marked read-only by the storage management layer, and 
the capacity balancer skips files that are being actively 
written. Capacity balancing is thus transparent to file 
system clients.

Capacity balancing can serve to balance I/O load 
across the storage pool. We have validated this in large 
production systems. Of course there can always be 
transient hot spots based on workload. It is important to 
avoid long term hot spots, and we did learn from some 
mistakes. The approach we take is to use a uniform 
random placement algorithm for initial data placement, 
and then preserve that during capacity balancing. The 
system must strive for a uniform distribution of both 
objects and capacity. This is more subtle than it may 
appear, and we learned that biases in data migration 
and placement can cause hot spots.

Initial data placement is uniform random, with the 
components of a file landing on a subset of available 
storage nodes. Each new file gets a new, randomized 
storage map. However, the uniform random distribution 
is altered by passive balancing that biases the creation 
of new data onto emptier blades. On the surface, this 
seems reasonable. Unfortunately, if a single node in 
a large system has a large bias as the result of being 
replaced recently, then it can end up with a piece of 
every file created over a span of hours or a few days. 
In some workloads, recently created files may be hotter 
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than files created several weeks or months ago. Our 
initial implementation allowed large biases, and we 
occasionally found this led to a long-term hot spot on a 
particular storage node. Our current system bounds the 
effect of passive balancing to be within a few percent 
of uniform random, which helps the system fine tune 
capacity when all nodes are nearly full, but does not 
cause a large bias that can lead to a hot spot.

Another bias we had was favoring large objects for 
active balancing because it is more efficient. There is 
per-file overhead to update its storage map, so it is more 
efficient to move a single 1 GB component object than 
to move 1000 1 MB component objects. However, 
consider a system that has relatively few large files that 
are widely striped, and lots of other small files. When it 
is expanded from N to N+M storage nodes (e.g., grows 
from 50 to 60), should the system balance capacity by 
moving a few large objects, or by moving many small 
objects? If the large files are hot, it is a mistake to bias 
toward them because the new storage nodes can get 
a disproportionate number of hot objects. We found 
that selecting a uniform random sample of objects from 
the source blades was the best way to avoid bias and 
inadvertent hot spots, even if it means moving lots of 
small objects to balance capacity.

4 Object RAID and Reconstruction
We protect against loss of a data object or an entire 
storage node by striping files across objects stored on 
different storage nodes, using a fault-tolerant striping 
algorithm such as RAID-1 or RAID-5. Small files are 
mirrored on two objects, and larger files are striped 
more widely to provide higher bandwidth and less 
capacity overhead from parity information. The per-file 
RAID layout means that parity information for different 
files is not mixed together, and easily allows different 
files to use different RAID schemes alongside each 
other. This property and the security mechanisms of the 
OSD protocol [Gobioff97] let us enforce access control 
over files even as clients access storage nodes directly. 
It also enables what is perhaps the most novel aspect 
of our system, client-driven RAID. That is, the clients 
are responsible for computing and writing parity. The 
OSD security mechanism also allows multiple metadata 

managers to manage objects on the same storage 
device without heavyweight coordination or interference 
from each other.

Client-driven, per-file RAID has four advantages for 
large-scale storage systems. First, by having clients 
compute parity for their own data, the XOR power of the 
system scales up as the number of clients increases. 
We measured XOR processing during streaming write 
bandwidth loads at 7% of the client’s CPU, with the rest 
going to the OSD/iSCSI/TCP/IP stack and other file 
system overhead. Moving XOR computation out of the 
storage system into the client requires some additional 
work to handle failures. Clients are responsible for 
generating good data and good parity for it. Because 
the RAID equation is per-file, an errant client can only 
damage its own data. However, if a client fails during a 
write, the metadata manager will scrub parity to ensure 
the parity equation is correct.

The second advantage of client-driven RAID is that 
clients can perform an end-to-end data integrity check. 
Data has to go through the disk subsystem, through the 
network interface on the storage nodes, through the 
network and routers, through the NIC on the client, and 
all of these transits can introduce errors with a very low 
probability. Clients can choose to read parity as well 
as data, and verify parity as part of a read operation. If 
errors are detected, the operation is retried. If the error 
is persistent, an alert is raised and the read operation 
fails. We have used this facility to track down flakey 
hardware components; we have found errors introduced 
by bad NICs, bad drive caches, and bad customer 
switch infrastructure. While file systems like ZFS [ZFS] 
maintain block checksums within a local file system, 
which does not address errors introduced during the 
transit of information to a network client. By checking 
parity across storage nodes within the client, the system 
can ensure end-to-end data integrity. This is another 
novel property of per-file, client-driven RAID.

Third, per-file RAID protection lets the metadata 
managers rebuild files in parallel. Although parallel 
rebuild is theoretically possible in block-based RAID, 
it is rarely implemented. This is due to the fact that the 
disks are owned by a single RAID controller, even in 
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dual-ported configurations. Large storage systems have 
multiple RAID controllers that are not interconnected. 
Since the SCSI Block command set does not provide 
fine-grained synchronization operations, it is difficult for 
multiple RAID controllers to coordinate a complicated 
operation such as an online rebuild without external 
communication. Even if they could, without connectivity 
to the disks in the affected parity group, other RAID 
controllers would be unable to assist. Even in a high-
availability configuration, each disk is typically only 
attached to two different RAID controllers, which limits 
the potential speedup to 2x.

When a StorageBlade module fails, the metadata 
managers that own Volumes within that BladeSet 
determine what files are affected, and then they farm 
out file reconstruction work to every other metadata 
manager in the system. Metadata managers rebuild their 
own files first, but if they finish early or do not own any 
Volumes in the affected Bladeset, they are free to aid 
other metadata managers. Declustered parity groups 
[Holland92] spread out the I/O workload among all 
StorageBlade modules in the BladeSet. The result 
is that larger storage clusters reconstruct lost data 
more quickly. Scalable reconstruction performance is 
presented later in this paper.

The fourth advantage of per-file RAID is that 
unrecoverable faults can be constrained to individual 
files. The most commonly encountered double-failure 
scenario with RAID-5 is an unrecoverable read error 
(i.e., grown media defect) during the reconstruction of 
a failed storage device. The 2nd storage device is still 
healthy, but it has been unable to read a sector, which 
prevents rebuild of the sector lost from the first drive and 
potentially the entire stripe or LUN, depending on the 
design of the RAID controller. With block-based RAID, it 
is difficult or impossible to directly map any lost sectors 
back to higher-level file system data structures, so a full 
file system check and media scan will be required to 
locate and repair the damage. A more typical response 
is to fail the rebuild entirely. RAID controllers monitor 
drives in an effort to scrub out media defects and avoid 
this bad scenario, and the Panasas system does media 
scrubbing, too. However, with high capacity SATA 
drives, the chance of encountering a media defect on 

drive B while rebuilding drive A is still significant. With 
per-file RAID-5, this sort of double failure means that 
only a single file is lost, and the specific file can be 
easily identified and reported to the administrator. While 
block-based RAID systems have been compelled to 
introduce RAID-6 (i.e., fault tolerant schemes that handle 
two failures), we have been able to deploy highly reliable 
RAID-5 systems with large, high performance storage 
pools.

4.1 RAID I/O Performance 
This section shows I/O performance as a function of the 
size of the storage system, the number of clients, and 
the striping configuration. Streaming I/O and random 
I/O performance are shown.

Figure 2: IOzone Streaming Bandwidth MB/sec

Figure 2 charts iozone [Iozone] streaming bandwidth 
performance from a cluster of up to 100 clients against 
storage clusters of 1, 2, 4 and 8 shelves. Each client ran 
two instances of iozone writing and reading a 4GB file 
with 64KB record size. (Note that the X-axis is not linear; 
there is a jump from 160 I/O streams to 200.) Appendix 
I summarizes the details of the hardware used in the 
experiments.

This is a complicated figure, but there are two basic 
results. The first is that performance increases linearly 
as the size of the storage system increases. The second 
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is that write performance scales up and stays flat as the 
number of clients increases, while the read performance 
tails off as the number of clients increases. The write 
performance curves demonstrate the performance 
scalability. A one-shelf system delivered about 330 
MB/sec, a two-shelf system delivered about 640 MB/
sec, a four-shelf system delivered about 1280 MB/sec, 
and the eight-shelf system peaked around 2500 MB/
sec. This corresponds to a scaling factor that is 95% of 
linear. In another experiment, a 30-shelf system achieved 
just over 10 GB/sec of read performance, for a per-shelf 
bandwidth of 330 MB/sec.

These kinds of results depend on adequate network 
bandwidth between clients and the storage nodes. They 
also require a 2-level RAID striping pattern for large files 
to avoid network congestion [Nagle04]. For a large file, 
the system allocates parity groups of 8 to 11 storage 
nodes until all available storage nodes have been used. 
Approximately 1 GB of data (2000 stripes) is stored in 
each parity group before rotating to the next one. When 
all parity groups have been used, the file wraps around 
to the first group again. The system automatically selects 
the size of the parity group so that an integral number 
of them fit onto the available storage nodes with the 
smallest unused remainder. The 2-level RAID pattern 
concentrates I/O on a small number of storage nodes, 
yet still lets large files expand to cover the complete 
set of storage nodes. Each file has its own mapping of 
parity groups to storage nodes, which diffuses load and 
reduces hot-spotting.

The difference between read and write scaling stems 
from the way OSDFS writes data. It performs delayed 
block allocation for new data so it can be batched and 
written efficiently. Thus new data and its associated 
metadata (i.e., indirect blocks) are streamed out to the 
next available free space, which results in highly efficient 
utilization of the disk arm. Read operations, in contrast, 
must seek to get their data because the data sets 
are created to be too large to fit in any cache. While 
OSDFS does object-aware read ahead, as the number 
of concurrent read streams increases, it becomes more 
difficult to optimize the workload because the amount of 
read-ahead buffering available for each stream shrinks.

Figure 3: Mixed Random I/O MB/sec

The difference between read and write scaling stems 
from the way OSDFS writes data. It performs delayed 
block allocation for new data so it can be batched and 
written efficiently. Thus new data and its associated 
metadata (i.e., indirect blocks) are streamed out to the 
next available free space, which results in highly efficient 
utilization of the disk arm. Read operations, in contrast, 
must seek to get their data because the data sets 
are created to be too large to fit in any cache. While 
OSDFS does object-aware read ahead, as the number 
of concurrent read streams increases, it becomes more 
difficult to optimize the workload because the amount of 
read-ahead buffering available for each stream shrinks.

We tested two different hardware configurations: 
StorageBlade modules with 512 MB of memory (labeled 
as “.5GB $”) and with 2 GB of memory (labeled “2GB 
$”). In each case the system had 9 StorageBlade 
modules, so the total memory on the StorageBlade 
modules was 4.5 GB and 18 GB, respectively. Two 
different transfer sizes are used: 64 KB matches the 
stripe unit size, and 4 KB is the underlying block size of 
OSDFS. Obviously, the larger memory configuration is 
able to cache most or all of the working set with small 
numbers of clients. As the number of clients increases 
such that the working set size greatly exceeds the 
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cache, then the difference in cache size will matter 
less. The throughput with 4 KB random I/O is very low 
with inadequate cache. One client gets approximately 
1.1 MB/sec, or about 280 4 KB ops/sec, and the rate 
with 4 clients drops to 700 KB/sec, or about 175 ops/
sec. The 4 KB and 64 KB writes in the mixed workload 
require four OSD operations to complete the RAID-
5 update to the full stripe (two reads, two writes). In 
addition, we observed extra I/O traffic between the 
client cache and the OSD due to read ahead and write 
gathering optimizations that are enabled by default to 
optimize streaming workloads. The iozone test does 1 
million I/Os from each client in the 4 KB block and 4 
GB file case, so we elected not to run that with 5 and 
6 clients in the 512 MB cache configuration simply 
because it ran too long.

4.2 RAID Rebuild Performance 
RAID rebuild performance determines how quickly 
the system can recover data when a storage node is 
lost. Short rebuild times reduce the window in which 
a second failure can cause data loss. There are three 
techniques to reduce rebuild times: reducing the size 
of the RAID parity group, declustering the placement 
of parity group elements, and rebuilding files in parallel 
using multiple RAID engines.

The rebuild bandwidth is the rate at which reconstructed 
data is written to the system when a storage node is 
being reconstructed. The system must read N times 
as much as it writes, depending on the width of the 
RAID parity group, so the overall throughput of the 
storage system is several times higher than the rebuild 
rate. A narrower RAID parity group requires fewer 
read and XOR operations to rebuild, so will result in 
a higher rebuild bandwidth. However, it also results in 
higher capacity overhead for parity data, and can limit 
bandwidth during normal I/O. Thus, selection of the 
RAID parity group size is a tradeoff between capacity 
overhead, on-line performance, and rebuild performance. 

Understanding declustering is easier with a picture. 
In Figure 4, each parity group has 4 elements, which 
are indicated by letters placed in each storage device. 
They are distributed among 8 storage devices. The 
ratio between the parity group size and the available 

storage devices is the declustering ratio, which in this 
example is ½. In the picture, capital letters represent 
those parity groups that all share the 2nd storage node. 
If the 2nd storage device were to fail, the system would 
have to read the surviving members of its parity groups 
to rebuild the lost elements. You can see that the other 
elements of those parity groups occupy about ½ of each 
other storage device.

Figure 4: Declustered parity groups

For this simple example you can assume each parity 
element is the same size so all the devices are filled 
equally. In a real system, the component objects will 
have various sizes depending on the overall file size, 
although each member of a parity group will be very 
close in size. There will be thousands or millions of 
objects on each device, and the Panasas system uses 
active balancing to move component objects between 
storage nodes to level capacity.

Declustering means that rebuild requires reading 
a subset of each device, with the proportion being 
approximately the same as the declustering ratio. The 
total amount of data read is the same with and without 
declustering, but with declustering it is spread out over 
more devices. When writing the reconstructed elements, 
two elements of the same parity group cannot be 
located on the same storage node. Declustering leaves 
many storage devices available for the reconstructed 
parity element, and randomizing the placement of each 
file’s parity group lets the system spread out the write 
I/O over all the storage. Thus declustering RAID parity 
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groups has the important property of taking a fixed 
amount of rebuild I/O and spreading it out over more 
storage devices.

Having per-file RAID allows the Panasas system to 
divide the work among the available DirectorBlade 
modules by assigning different files to different 
DirectorBlade modules. This division is dynamic with 
a simple master/worker model in which metadata 
services make themselves available as workers, and 
each metadata service acts as the master for the 
volumes it implements. By doing rebuilds in parallel on 
all DirectorBlade modules, the system can apply more 
XOR throughput and utilize the additional I/O bandwidth 
obtained with declustering.

Figure 5: RAID Rebuild MB/sec vs. System Size

Figure 5 plots rebuild performance as the size of the 
storage cluster grows from 1 DirectorBlade module 
and 10 StorageBlade modules up to 12 DirectorBlade 
modules and 120 StorageBlade modules. Each shelf 
has 1 DirectorBlade module (1.6 GHz Xeon) and 10 
StorageBlade modules. In this experiment, the system 
was populated with 100 MB files or 1 GB files, and 
each glyph in the chart represents an individual test. 
The declustering ratio ranges from 0.9 to 0.075, and the 
resulting reconstruction bandwidth ranges from 10 MB/
sec to 120 MB/sec. Declustering and parallel rebuild 
gives nearly linear increase in rebuild performance as 
the system gets larger.

The reduced performance at 8 and 10 shelves stems 
from a wider stripe size. The system automatically picks 
a stripe width from 8 to 11, maximizing the number of 
storage nodes used while leaving at least one spare 
location. For example, in a single-shelf system with 10 
StorageBlade modules and 1 distributed spare, the 
system will use a stripe width of 9. The distributed spare 
allows reconstruction to proceed without replacing 
a failed storage node; each file’s storage map skips 
at least one available storage node, creating a virtual 
spare location for that file that can be used to store a 
rebuilt copy of a failed component. Each file has its own 
spare location, which distributes the spares across the 
Bladeset. The system reserves capacity on each storage 
node to allow reconstruction. With 80 storage nodes 
and 1 distributed spare, the system chooses a stripe 
width of 11 so that 7 parity groups would fit, leaving 3 
unused storage nodes. A width of 10 cannot be used 
because there would be no unused storage nodes. 
Table 1 lists the size of the parity group (i.e., stripe 
width) as a function of the size of the storage pool.

Table 1: Default Parity Group Size

The variability in the 12-shelf result came from runs that 
used 1 GB files and multiple Volumes. In this test, the 
number of files impacted by the storage node failure 
varied substantially among Volumes because only 30 
GB of space was used on each storage node, and 
each metadata manger only had to rebuild between 25 
and 40 files. There is a small delay between the time a 
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metadata manager completes its own Volume and the 
time it starts working for other metadata managers; as 
a result, not every metadata manager is fully utilized 
towards the end of the rebuild. When rebuilding a nearly 
full StorageBlade, this delay is insignificant, but in our 
tests it was large enough to affect the results. Since we 
compute bandwidth by measuring the total rebuild time 
and dividing by the amount of data rebuilt, this uneven 
utilization skewed the results lower. We obtained higher 
throughput with less variability by filling the system with 
10 times as many 100 MB files, which results in a more 
even distribution of files among Volume owners, or by 
using just a single Volume to avoid the scheduling issue.

Figure 6 shows the effect of RAID parity group width 
on the rebuild rate. If a parity stripe is 6-wide, then the 
5 surviving elements are read to recompute the missing 
6th element. If a parity stripe is only 3-wide, then only 2 
surviving elements are read to recompute the missing 
element. Even though the reads can be issued in 
parallel, there is more memory bandwidth associated 
with reads, and more XOR work to do with the wider 
stripe. Therefore narrower parity stripes are rebuilt more 
quickly. The experiment confirms this.

Figure 6: RAID Rebuild MB/sec vs Stripe Width 

We measured two systems. One had three DB-
100 DirectorBlade modules, and 8 SB-500a-XC 
StorageBlade modules. The maximum stripe width in 
this configuration is 7 to allow for the spare. The other 

system had four DB-100a DirectorBlade modules and 
18 SB-500a-XC StorageBlade modules in two shelves. 
The maximum stripe width in this configuration was 
8. Rebuild bandwidth increases with narrower stripes 
because the system has to read less data to reconstruct 
the same amount. The results also show that having 
more DirectorBlade modules increases rebuild rate. This 
is because there are more “reconstruction engines” that 
can better exploit the bandwidth available in the system. 
These results indicate that the rebuild performance of 
the large systems shown in Figure 5 could be much 
higher with 2 DirectorBlade modules per shelf, more 
than twice the performance shown since those results 
used older, first generation DirectorBlade modules.

5 Metadata Management 
There are several kinds of metadata in our system. 
These include the mapping from object IDs to sets 
of block addresses, mapping files to sets of objects, 
file system attributes such as ACLs and owners, file 
system namespace information (i.e., directories), and 
configuration/management information about the 
storage cluster itself. One approach might be to pick a 
common mechanism, perhaps a relational database, and 
store all of this information using that facility. This shifts 
the issues of scalability, reliability, and performance 
from the storage system over to the database system. 
However, this makes it more difficult to optimize the 
metadata store for the unique requirements of each 
type of metadata. In contrast, we have provided specific 
implementations for each kind of metadata. Our 
approach distributes the metadata management among 
the object storage devices and metadata managers to 
provide scalable metadata management performance, 
and allows selecting the best mechanism for each 
metadata type.

5.1 Block-level Metadata 
Block-level metadata is managed internally by OSDFS, 
our file system that is optimized to store objects. 
OSDFS uses a floating block allocation scheme where 
data, block pointers, and object descriptors are batched 
into large write operations. The write buffer is protected 
by the integrated UPS, and it is flushed to disk on 
power failure or system panics. Our block allocation 
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algorithms are similar to those of WAFL [Hitz94] and 
LFS [Rosenblum90], although unlike LFS there is no 
cleaner that compacts free space. Fragmentation was 
an issue in early versions of OSDFS that used a first-fit 
block allocator, but this has been significantly mitigated 
in later versions that use a modified best-fit allocator.

OSDFS stores higher level file system data structures, 
such as the partition and object tables, in a modified 
BTree data structure. Block mapping for each object 
uses a traditional direct/indirect/double-indirect scheme. 
Free blocks are tracked by a proprietary bitmap-like data 
structure that is optimized for copy-on-write reference 
counting, part of OSDFS’s integrated support for 
object- and partition-level copy-on-write snapshots.

Block-level metadata management consumes most of 
the cycles in file system implementations [Gibson97]. 
By delegating storage management to OSDFS, 
the Panasas metadata managers have an order of 
magnitude less work to do than the equivalent SAN file 
system metadata manager that must track all the blocks 
in the system.

5.2 File-level Metadata 
Above the block layer is the metadata about files. This 
includes user-visible information such as the owner,  
size, and modification time, as well as internal 
information that identifies which objects store the file 
and how the data is striped across those objects  
(i.e., the file’s storage map). Our system stores this file 
metadata in object attributes on two of the N objects 
used to store the file’s data. The rest of the objects  
have basic attributes like their individual length and 
modify times, but the higher-level file system attributes 
are only stored on the two attribute-storing components. 
Note that the file’s length and modify time can be 
deduced from the corresponding attributes on each 
object, but for performance we store an explicit file-
level version of these attributes that is distinct from the 
object-level attributes.

Remember the hot-spot problem caused by biasing file 
creates toward an empty replacement blade? This is 
because the first two component objects store the file-

level attributes, so they see more Set Attributes and Get 
Attributes traffic than the rest of the components. Files 
always start out mirrored on these first two attribute-
storing components, so the file create bias was creating 
a metadata hot spot.

File names are implemented in directories similar to 
traditional UNIX file systems. Directories are special files 
that store an array of directory entries. A directory entry 
identifies a file with a tuple of <serviceID, partitionID, 
objectID>, and also includes two <osdID> fields that 
are hints about the location of the attribute storing 
components. The partitionID/objectID is the two-level 
object numbering scheme of the OSD interface, and 
we use a partition for each volume. Directories are 
mirrored (RAID-1) in two objects so that the small write 
operations associated with directory updates  
are efficient.

Clients are allowed to read, cache and parse directories, 
or they can use a Lookup RPC to the metadata manager 
to translate a name to an <serviceID, partitionID, 
objectID> tuple and the <osdID> location hints. The 
serviceID provides a hint about the metadata manager 
for the file, although clients may be redirected to the 
metadata manager that currently controls the file. The 
osdID hint can become out-of-date if reconstruction 
or active balancing moves an object. If both osdID 
hints fail, the metadata manager has to multicast a 
GetAttributes to the storage nodes in the BladeSet to 
locate an object. The partitionID and objectID are the 
same on every storage node that stores a component 
of the file, so this technique will always work. Once 
the file is located, the metadata manager automatically 
updates the stored hints in the directory, allowing future 
accesses to bypass this step.

File operations may require several object operations. 
Figure 7 shows the steps used in creating a file. The 
metadata manager keeps a local journal to record 
in-progress actions so it can recover from object 
failures and metadata manager crashes that occur 
when updating multiple objects. For example, creating 
a file is fairly complex task that requires updating the 
parent directory as well as creating the new file. There 
are 2 Create OSD operations to create the first two 
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components of the file, and 2 Write OSD operations, 
one to each replica of the parent directory. As a 
performance optimization, the metadata server also 
grants the client read and write access to the file and 
returns the appropriate capabilities to the client as  
part of the FileCreate results. The server makes  
record of these write capabilities to support error 
recovery if the client crashes while writing the file.  
Note that the directory update (step 7) occurs after the 
reply, so that many directory updates can be batched 
together. The deferred update is protected by the op-log 
record that gets deleted in step 8 after the successful 
directory update.

The metadata manager maintains an op-log that 
records the object create and the directory updates 
that are in progress. This log entry is removed when the 
operation is complete. If the metadata service crashes 
and restarts, or a failure event moves the metadata 
service to a different manager node, then the op-log is 
processed to determine what operations were active at 
the time of the failure. The metadata manager rolls the 
operations forward or backward to ensure the object 
store is consistent. If no reply to the operation has 
been generated, then the operation is rolled back. If a 
reply has been generated but pending operations are 
outstanding (e.g., directory updates), then the operation 
is rolled forward.

The write capability is stored in a cap-log so that when 
a metadata server starts it knows which of its files are 
busy. In addition to the “piggybacked” write capability 
returned by FileCreate, the client can also execute a 
StartWrite RPC to obtain a separate write capability. 
The cap-log entry is removed when the client releases 
the write cap via an EndWrite RPC. If the client reports 
an error during its I/O, then a repair log entry is made 
and the file is scheduled for repair. Read and write 
capabilities are cached by the client over multiple 
system calls, further reducing metadata server traffic.

Our log implementation uses a fast (3 μsec updates) 
in-memory logging mechanism that is saved to disk on 
system shutdown, power failure, and software faults, 
including kernel panics. In fail over configurations 
this log is synchronously reflected to a remote peer’s 

memory via a low-latency protocol (90 μsec update  
over gigabit Ethernet). Software crashes are usually 
handled by a restart and recovery from the local logs.  
If a hardware fault or OS hang disables a DirectorBlade 
module, then its backup takes over and recovers from 
the log replica.

Figure 7: Creating a File

If the logs are unrecoverable, or there was no backup, 
then a crash may have left the distributed object store in 
an inconsistent state (e.g., a partially created file). These 
inconsistencies are discovered and tolerated during 
normal operation. In some cases the system can repair 
the object during the file open operation. In other cases, 
the system just fences the suspect objects and they 
can be repaired later via an (offline) file system recovery 
check facility that sweeps the object store, repairing 
inconsistencies and rolling in-progress operations 
forward or back. The optional recovery process runs at 
about 800 files/sec, and can run in parallel over multiple 
Volumes on different DirectorBlade modules.

The combination of fast in-memory logging to battery 
backed memory, log replication to a remote peer, storing 
metadata on objects, and an off-line repair process 
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is a robust design point. The in-memory logging is 
possible because of the integrated UPS that lets us 
safely shut down our system. The remote backup guards 
against outright hardware failure of the DirectorBlade 
module. However, in any complex product, software 
faults are a hazard. Our metadata manager runs as a 
user-level application, so it can be killed and restarted 
transparently and recover based on its logs. The NFS 
gateway, which uses the kernel-resident client, can 
be a source of kernel panics. Most of these have 
been “clean” kernel panics where the system is able 
to save the in-memory log contents. Finally, if all else 
fails, we know we can run the recovery process, which 
will restore the file system to a consistent state. It is 
comforting to know that the metadata managers can all 
halt and catch fire, and we can still recover the storage 
system, since all of the file metadata is resident on the 
storage nodes themselves. 

5.3 File Metadata Performance 
We measured metadata performance with the Metarates 
application [Metarates]. This is an MPI application 
that coordinates file system accesses from multiple 
clients. Figure 8 shows Create and Utime performance 
for fifteen 2.4 GHz Xeon clients against a single 
DirectorBlade module. The Create operation creates an 
empty file, and each client works in its own directory. 
The Utime operation sets the timestamp attributes on a 
file. Results are presented for the Panasas DirectFlow 
protocol (DF) and the NFS protocol that uses the 
gateway client on the DirectorBlade module. Two 
different DirectorBlade models were measured: DB-
100 and DB-100a. We also measured an NFS server 
running Linux with a locally attached RAID array.

The Panasas protocol performs better on Utime than 
NFS because of the way attributes are managed on the 
clients. The Panasas client can reliably cache attributes 
because of a callback protocol from the stateful 
Panasas metadata managers. The NFS clients need to 
revalidate their cache with a GetAttr operation before 
they can complete the SetAttr, so they perform twice as 
many server operations to complete a Utime operation, 
and hence the client’s throughput is reduced.

In the Linux NFS test the file server does synchronous 
disk writes during CREATE and SETATTR operations, 
as required by the stable-storage clause of the NFSv3 
standard [Pawlowski94], with a clear performance 
impact. In the Panasas system, the writes are buffered 
in protected memory on the StorageBlade modules. 
Updates are streamed in a log-fashion, and the 
operation time is decoupled from disk I/O. Our create 
algorithm is very robust, with journal records resident on 
two DirectorBlade modules and objects created on two 
StorageBlade modules before the operation returns to 
the client. The latency for a single create is about  
2 msec.

Some NFS servers optimize Create by logging them 
in NVRAM and returning immediately. This is not done 
in the Panasas system because clients must be able 
to write directly to the storage nodes after the Create 
operation returns from the metadata manager. While we 
have considered granting create capabilities to clients 
as an optimization, we have avoided the additional 
complexity it adds to the protocol. Our metadata 
manager creates the objects on storage before returning 
to the client.

Figure 8: Metarates throughput (ops/sec)

15
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Figure 9: Metarates Create and Utime ops/sec

Figure 9 shows Create and Utime performance as the 
number of clients increase. These operations involve 
I/O operations to the StorageBlade modules. Create 
does two object creates and two writes to the parent 
directory. Utime does a set attributes to two objects.  
The DirectorBlade and shelf correspond to the “DB- 
100” in the first chart. The 2.4 GHz DirectorBlade 
module is approaching saturation at 840 creates/sec 
and 2000 utime/sec with 15 clients.

Figure 10: Metarates Stat ops/sec

Figure 10 shows Stat performance. The benchmark 
has a single client create all the files, followed by all 
the clients doing their Stat operations. The first client 

always hits in its cache and consequently gets 45,000 
Stat ops/sec. The other clients get 1,200 to 2,000 ops/
sec, since their operations involve a server round-trip. 
The graph charts the Metarates “aggregate throughput”, 
which is obtained by multiplying the slowest client 
times the total number of clients. This metric may seem 
unfair, but it represents the effective throughput for 
barrier synchronized MPI applications. At two clients, for 
example, one ran at 1,777 ops/sec, while the other ran 
at 45,288 ops/sec, and the aggregate is reported as 
3,554 ops/sec.

5.4 System-level Metadata 
The final layer of metadata is information about the 
overall system itself. One possibility would be to store 
this information in objects and bootstrap the system 
through a discovery protocol. The most difficult aspect 
of that approach is reasoning about the fault model. The 
system must be able to come up and be manageable 
while it is only partially functional. We chose instead a 
model with a small replicated set of system managers, 
each that stores a replica of the system configuration 
metadata.

Each system manager maintains a local database, 
outside of the object storage system. We use Berkeley 
DB to store tables that represent our system model. The 
different system manager instances are members of a 
replication set that use Lamport’s part-time parliament 
(PTP) protocol [Lamport98] to make decisions and 
update the configuration information. Clusters are 
configured with one, three, or five system managers 
so that the voting quorum has an odd number and 
a network partition will cause a minority of system 
managers to disable themselves.

System configuration state includes both static state, 
such as the identity of the blades in the system, as 
well as dynamic state such as the online/offline state 
of various services and error conditions associated 
with different system components. Each state update 
decision, whether it is updating the admin password 
or activating a service, involves a voting round and an 
update round according to the PTP protocol. Database 
updates are performed within the PTP transactions to 
keep the databases synchronized. Finally, the system 
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keeps backup copies of the system configuration 
databases on several other blades to guard against 
catastrophic loss of every system manager blade.

Blade configuration is pulled from the system managers 
as part of each blade’s startup sequence. The initial 
DHCP handshake conveys the addresses of the 
system managers, and thereafter the local OS on each 
blade pulls configuration information from the system 
managers via RPC.

The cluster manager implementation has two  
layers. The lower level PTP layer manages the voting 
rounds and ensures that partitioned or newly added 
system managers will be brought up-to-date with the 
quorum. The application layer above that uses the 
voting and update interface to make decisions.  
Complex system operations may involve several steps, 
and the system manager has to keep track of its 
progress so it can tolerate a crash and roll back or  
roll forward as appropriate.

For example, creating a volume (i.e., a quota-tree) 
involves file system operations to create a top-level 
directory, object operations to create an object partition 
within OSDFS on each StorageBlade module, service 
operations to activate the appropriate metadata 
manager, and configuration database operations 
to reflect the addition of the volume. Recovery is 
enabled by having two PTP transactions. The initial 
PTP transaction determines if the volume should be 
created, and it creates a record about the volume that 
is marked as incomplete. Then the system manager 
does all the necessary service activations, file and 
storage operations. When these all complete, a final 
PTP transaction is performed to commit the operation. 
If the system manager crashes before the final PTP 
transaction, it will detect the incomplete operation the 
next time it restarts, and then roll the operation forward 
or backward.

We measured a simple PTP transaction that updates 
an entry in the configuration database with a simple 
test program that performs 1000 of these operations. 
The cost of an update, which includes the RPC to the 
system manager, the PTP voting round, and the BDB 

update to a single table, is around 7 msec on our 2.4 
GHz DirectorBlade modules. This cost is dominated 
by a synchronous disk write in the BDB update. We 
enabled synchronous disk writes in spite of the UPS so 
that the system configuration database is highly reliable. 
The cost doubles to 14 msec when there is a replication 
set of 2, 3, 4, or 5 members because of an additional 
table update performed by the PTP implementation. 
The president of the PTP quorum performs RPCs in 
parallel to the quorum members, so at these scales of 
replication there is no performance difference between 
having 2 or 5 members of the replication set.

Note that there is two or three orders of magnitude 
difference between the logging performed by the file 
system metadata manager and the voting transaction 
performed by the cluster manager. The in-memory log 
update is 3 microseconds, or 90 microseconds to 
reflect that across the network. The PTP voting round 
and BDB database update is 7 to 14 milliseconds. 
These different mechanisms let us have a very 
robust cluster management system and a very high 
performance file system.

6 Related Work
The main file systems that are in production use with 
high performance compute clusters are the Panasas 
file system, Lustre [Lustre02], GPFS [Schmuck02], 
and PVFS2 [PVFS2][Devulapalli07][Yu05]. Cope gives 
some performance comparisons between Lustre, GPFS, 
and PVFS2 [Cope06]. Lustre has a similar overall 
architecture to Panasas, and both systems are based on 
ideas from the CMU NASD work. Lustre uses relatively 
larger object storage servers (OSS servers and OST 
object stores), and can use simple striping across OST 
but without active capacity balancing or extra parity 
information. PVS2 also does simple striping across 
storage nodes without redundancy. GPFS and Lustre 
rely on block-based RAID controllers to handle disk 
failure, whereas PVS2 typically uses local file systems 
on compute nodes.

Clustered NFS systems include Isilon [Isilon], NetApp 
GX [Klivanski06], and PolyServe[Polyserve]. These NFS 
systems have limited scalability because each client 
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must funnel its requests through a single access point, 
which then forwards requests to the nodes that own 
the data. The parallel NFS extension [Hildebrand05], 
which will be part of NFSv4.1, may help these systems 
overcome this limitation. The Panasas NFS export from 
the DirectorBlade modules has similar characteristics to 
these systems.

SAN file systems (e.g., CXFS [Shepard04], [IBRIX], 
MPSFi [EMC], Oracle’s OCFS2 [Fasheh06], GFS2 
[GFS2], ADIC StorNext) have non-standard clients, a 
metadata manager node, and are block oriented. These 
evolved from single-host file systems by introducing a 
block manager, or metadata server. Block management 
is generally a scalability limit because the metadata 
manager has to track billions of blocks in a system of 
any size.

GPFS is also a SAN file system, but its distributed lock 
management scheme and the use of large blocks (256 
K to 4 MB) help it scale up to support larger clusters. 
GPFS uses a centralized token manager that delegates 
fine-grained locks over blocks, inodes, attributes, and 
directory entries. Lock delegation lets the first client 
that accesses a resource become the lock manager 
for it, which spreads out metadata management load. 
There are workloads, however, that result in a significant 
amount of traffic between lock owners and the token 
manager as the system negotiates ownership of locks. 
Nodes can be both clients and servers, although in large 
systems there are typically a larger number of client-
only nodes, and a subset of nodes that control storage. 
The services are fault tolerant via fail over protocols and 
dual-porting of drives.

There are several research projects exploring object 
storage, including Ceph [Weil06] and Usra Minor [Abd-
El-Malek05]. These systems have slightly different object 
semantics and custom protocols. Usra Minor provides 
versioning as a basic property of its objects. Ceph 
uses a hash-based distribution scheme, and its object 
servers propagate replicas to each other (i.e., there is 
redundancy but no striping). Lustre uses a distributed 
lock manager protocol in which clients, OSS, and the 
metadata manager all participate. The Panasas object 
model is based on the standard iSCSI/OSD command 

set that we expect to be part of next generation 
commodity storage devices.

Striping across data servers for increased bandwidth 
was evaluated in several research systems. In the Zebra 
file system [Hartman93], clients would generate a 
stream of data containing a log of their writes to many 
files. This log stream was striped across servers, and 
a parity component was generated to allow recovery. 
This approach combines parity information for all the 
files in the log, which does not allow tuning the per-file 
RAID configurations. The Cheops parallel file system 
was layered over NASD and did provide per-file striping, 
but not per-file RAID [Gibson98]. Isilon stripes files 
across its storage nodes and uses RAID and Reed 
Soloman encoding to protect against lost objects. Isilon 
performance, however, is limited by its NFS interface. 
The RAIF system [Jukov07] maps a file onto multiple 
file system and allows striping. This is performed by a 
stackable file system on the client. However, that work 
doesn’t describe how to handle updates to shared 
files by multiple clients. Lustre uses simple, RAID-0 
striping across object storage servers, and depends 
on RAID within the server to recover from disk failures, 
and failover and dual ported drives between servers to 
handle server failure. Recent versions of NetApp-GX 
can stripe files and volumes across storage nodes. 
It also provides facilities for migrating (i.e., copying) 
file sets between servers to shift load, and it has the 
ability to configure read-only replicas of a volume for 
load-sharing, features similar to those introduced by 
AFS [Howard88]. The Panasas approach to striping is 
specifically designed to provide performance that scales 
up to support very large systems with thousands of 
active clients sharing the same set of files.

Google FS [Ghemawat03] is a user-level file system 
implemented in application-specific libraries. Google FS 
uses replication for fault tolerance so it can tolerate loss 
of a storage node. Clients are responsible for pushing 
data to replicas, and then notifying the metadata 
manager when the updates are complete. Google FS 
provides application-specific append semantics to 
support concurrent updates. Panasas has fully serialized 
updates to provide POSIX semantics, and another 
concurrent write mode that optimizes interleaved, 
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strided write patterns to a single file from many 
concurrent clients.

Of these systems, only Panasas, Isilon, Google, and 
Ceph use redundant data on different storage nodes 
to recover from drive failures. The other systems use 
RAID controllers, or software-RAID within a storage 
node, or no redundancy at all. The other differentiator 
is the division of metadata management among nodes. 
Panasas divides ownership by file trees, allowing 
multiple metadata managers to manage the overall 
system. Most other systems have a single metadata 
manager, including Lustre, IBRIX, and the other SAN file 
systems. GPFS has a hybrid scheme with a single token 
manager that can delegate metadata responsibility. 
Ceph uses a fine-grained hashing scheme to distribute 
metadata ownership. 1. For an application performing 
single-threaded or serial I/O, we saw strong throughput 
at 356 MB/S for writes, and over 400 MB/S for reads.

7 Conclusions
This paper has presented the design of the Panasas 
parallel file system and given several performance 
measurements that illustrate its scalability. The design 
uses storage nodes that run an OSDFS object store, 
and manager nodes that run a file system metadata 
manager,  a cluster manager, and a Panasas file system 
client that can be re-exported via NFS and CIFS. 
Scalability comes from the balanced nature of each 
storage node, which includes disk, CPU, memory, and 
network bandwidth resources. The Panasas storage 
cluster is a parallel machine for block allocation because 
each storage node manages its own drives privately, and 
it is a parallel machine for RAID rebuild because each 
manager blade participates in the rebuild of declustered 
parity groups that are spread across the storage cluster.

Good performance comes from leveraging non-volatile 
memory to hide latency and protect caches, and the 
ability to distribute the file server metadata at the block, 
file, and system level across the storage nodes and 
manager nodes within the storage cluster. Striping 
files over objects with per-file RAID protection allows 
scalable performance for environments with many 
clients, as well as for the rebuild rates of failed OSDs. 

We have shown I/O and metadata performance results 
for systems ranging in size from 11 nodes to 132 nodes 
in the storage cluster, and from 1 to 100 file system 
clients.

Appendix I: Experimental Details 
This section summarizes the hardware configuration 
used for the different experiments. Because we have an 
assorted collection of hardware that spans 3 product 
generations in our labs, some of the experiments use 
different hardware.

The StorageBlade module contains a fairly low-powered 
x86 processor, two disks (250 GB, 500 GB or 750 
GB 7200 RPM SATA drives), 512 MB or 2 GB ECC 
memory, and two GE NICs. The DirectorBlade module 
has a faster x86 processor, 4 GB ECC memory, 
two GE NICs, and a small PATA or SATA disk. The 
specific configuration of each blade model used in our 
experiments is listed in Table 2. Note that despite having 
a slower clock speed, the CPU in the DB-100a is about 
30% faster for our code than the CPU in the DB-100.

Table 2: Blade hardware details

The clients are single CPU, 2.4 GHz or 2.8 GHz Xeon 
with 1 GE NIC.

19
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The networking environment is 1GE using a Force10 
E1200 as a core switch. Client nodes are directly 
connected to the core switch. Each shelf chassis has 
a 4 GE trunked connection to the core switch, unless 
otherwise noted.

Experiment 1. Scaling clients against different sized 
storage systems. Up to 100 clients were used, each 
running two instances of iozone. We used flags -i 0 -i 1 
-e -c -r 64k -s 5g –w and a -+m clients file that put two 
threads on each client. The StorageBlade modules are 
SB-160. Each shelf has one first generation DB module 
and 10 StorageBlade modules, although only a single 
metadata service is involved in this test.

Experiment 2. Random I/O vs storage node cache 
memory and number of clients. We used iozone flags -i 
0 -i 1 -i 2 -i 8 -s 4g and reported the mixed I/O number. 
There are 9 SB-500a or SB-500a-XC StorageBlade 
modules and 2 DB-100 DirectorBlade modules, but only 
a single DirectorBlade was active. The shelves only had 
a single GE uplink.

Experiment 3. Scalable RAID Rebuild. 10 to 120 
SB-160 StorageBlade modules, and 1 to 12 DB 
DirectorBlade modules. We measured the capacity used 
on a failed storage node, and divided by the wall clock 
time reported by the system to complete reconstruction.

Experiment 4. RAID rebuild vs. stripe width. The 3+8 
system had three DB-100 DirectorBlade modules, and 
8 SB-500a-XC StorageBlade modules. The 4+18 had 
four DB-100a DirectorBlade modules and 18 SB-500a-
XC StorageBlade modules in two shelves.

Experiment 5. Metarates performance. The two different 
DirectorBlades were the DB-100 and DB-100a. The 
NFS server was running Red Hat Enterprise Linux 4 
(2.6.9-42.ELsmp) on a 4-way 2.6 GHz Opteron 8218 
machine with four 10K RPM SAS drives in a RAID-0 
configuration and the ext3 file system.
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