
1.888.PANASAS www.panasas.com

White Paper

May 2010

Scalable Performance of the
Panasas Parallel File System

Brent Welch1, Marc Unangst1, Zainul Abbasi1, Garth Gibson1,2,
Brian Mueller1, Jason Small1, Jim Zelenka1, Bin Zhou1

1Panasas, Inc.2 Carnegie Mellon

{welch,mju,zabbasi,garth,bmueller,jsmall,jimz,bzhou}@panasas.com

This paper was published in the proceedings of the 6th USENIX Conference
on File and Storage Technologies (FAST ’08),

San Jose, California, February 26-29, 2008

1.888.PANASAS www.panasas.com

2

Scalable Performance of the Panasas Parallel File System

Abstract
The Panasas file system uses parallel and redundant
access to object storage devices (OSDs), per-file
RAID, distributed metadata management, consistent
client caching, file locking services, and internal cluster
management to provide a scalable, fault tolerant, high
performance distributed file system. The clustered
design of the storage system and the use of client-
driven RAID provide scalable performance to many
concurrent file system clients through parallel access
to file data that is striped across OSD storage nodes.
RAID recovery is performed in parallel by the cluster
of metadata managers, and declustered data
placement yields scalable RAID rebuild rates as the
storage system grows larger. This paper presents
performance measures of I/O, metadata, and recovery
operations for storage clusters that range in size from
10 to 120 storage nodes, 1 to 12 metadata nodes, and
with file system client counts ranging from 1 to 100
compute nodes. Production installations are as large
as 500 storage nodes, 50 metadata managers, and
5000 clients.

1 Introduction
Storage systems for high performance computing
environments must be designed to scale in performance
so that they can be configured to match the required
load. Clustering techniques are often used to provide
scalability. In a storage cluster, many nodes each control
some storage, and the overall distributed file system
assembles the cluster elements into one large, seamless
storage system. The storage cluster can be hosted on
the same computers that perform data processing, or
they can be a separate cluster that is devoted entirely
to storage and accessible to the compute cluster via a
network protocol.

The Panasas storage system is a specialized storage
cluster, and this paper presents its design and a
number of performance measurements to illustrate the
scalability. The Panasas system is a production system
that provides file service to some of the largest compute
clusters in the world, in scientific labs, in seismic data
processing, in digital animation studios, in computational

fluid dynamics, in semiconductor manufacturing, and
in general purpose computing environments. In these
environments, hundreds or thousands of file system
clients share data and generate very high aggregate I/O
load on the file system. The Panasas system is designed
to support several thousand clients and storage
capacities in excess of a petabyte.

The unique aspects of the Panasas system are its use
of per-file, client-driven RAID, its parallel RAID rebuild,
its treatment of different classes of metadata (block, file,
system) and a commodity parts based blade hardware
with integrated UPS. Of course, the system has many
other features (such as object storage, fault tolerance,
caching and cache consistency, and a simplified
management model) that are not unique, but are
necessary for a scalable system implementation.

2 Panasas File System Background
This section makes a brief tour through the system to
provide an overview for the following sections. The
two overall themes to the system are object storage,
which affects how the file system manages its data, and
clustering of components, which allows the system to
scale in performance and capacity.

The storage cluster is divided into storage nodes and
manager nodes at a ratio of about 10 storage nodes
to 1 manager node, although that ratio is variable. The
storage nodes implement an object store, and are
accessed directly from Panasas file system clients
during I/O operations. The manager nodes manage
the overall storage cluster, implement the distributed
file system semantics, handle recovery of storage node
failures, and provide an exported view of the Panasas
file system via NFS and CIFS. Figure 1 gives a basic
view of the system components.

2.1 Object Storage
An object is a container for data and attributes; it is
analogous to the inode inside a traditional UNIX file
system implementation. Specialized storage nodes
called Object Storage Devices (OSD) store objects
in a local OSDFS file system. The object interface

1.888.PANASAS www.panasas.com

3

Scalable Performance of the Panasas Parallel File System

addresses objects in a two-level (partition ID/object ID)
namespace. The OSD wire protocol provides byte-
oriented access to the data, attribute manipulation,
creation and deletion of objects, and several other
specialized operations [OSD04]. We use an iSCSI
transport to carry OSD commands that are very similar
to the OSDv2 standard currently in progress within
SNIA and ANSI-T10 [SNIA].

The Panasas file system is layered over the object
storage. Each file is striped over two or more objects to
provide redundancy and high bandwidth access. The
file system semantics are implemented by metadata
managers that mediate access to objects from clients
of the file system. The clients access the object
storage using the iSCSI/OSD protocol for Read and
Write operations. The I/O operations proceed directly
and in parallel to the storage nodes, bypassing the
metadata managers. The clients interact with the out-
of-band metadata managers via RPC to obtain access
capabilities and location information for the objects that
store files. The performance of striped file access is
presented later in the paper.

Figure 1: Panasas System Components

Object attributes are used to store file-level attributes,
and directories are implemented with objects that
store name to object ID mappings. Thus the file system
metadata is kept in the object store itself, rather than
being kept in a separate database or some other form
of storage on the metadata nodes. Metadata operations
are described and measured later in this paper.

2.2 System Software Components
The major software subsystems are the OSDFS object
storage system, the Panasas file system metadata
manager, the Panasas file system client, the NFS/CIFS
gateway, and the overall cluster management system.

• The Panasas client is an installable kernel module
that runs inside the Linux kernel. The kernel module
implements the standard VFS interface, so that the
client hosts can mount the file system and use a
POSIX interface to the storage system. We don’t
require any patches to run inside the 2.4 or 2.6
Linux kernel, and have tested with over 200 Linux
variants.

• Each storage cluster node runs a common platform
that is based on FreeBSD, with additional services
to provide hardware monitoring, configuration
management, and overall control.

• The storage nodes use a specialized local file
system (OSDFS) that implements the object
storage primitives. They implement an iSCSI target
and the OSD command set. The OSDFS object
store and iSCSI target/OSD command processor
are kernel modules. OSDFS is concerned with
traditional block-level file system issues such as
efficient disk arm utilization, media management
(i.e., error handling), high throughput, as well as the
OSD interface.

• The cluster manager (SysMgr) maintains the global
configuration, and it controls the other services
and nodes in the storage cluster. There is an
associated management application that provides
both a command line interface (CLI) and an HTML
interface (GUI). These are all user level applications
that run on a subset of the manager nodes. The
cluster manager is concerned with membership in
the storage cluster, fault detection, configuration

1.888.PANASAS www.panasas.com

4

Scalable Performance of the Panasas Parallel File System

management, and overall control for operations like
software upgrade and system restart [Welch07].

• The Panasas metadata manager (PanFS)
implements the file system semantics and
manages data striping across the object storage
devices. This is a user level application that runs
on every manager node. The metadata manager
is concerned with distributed file system issues
such as secure multi-user access, maintaining
consistent file- and object-level metadata, client
cache coherency, and recovery from client, storage
node, and metadata server crashes. Fault tolerance
is based on a local transaction log that is replicated
to a backup on a different manager node.

• The NFS and CIFS services provide access to
the file system for hosts that cannot use our Linux
installable file system client. The NFS service is
a tuned version of the standard FreeBSD NFS
server that runs inside the kernel. The CIFS
service is based on Samba and runs at user level.
In turn, these services use a local instance of the
file system client, which runs inside the FreeBSD
kernel. These gateway services run on every
manager node to provide a clustered NFS and
CIFS service.

2.3 Commodity Hardware Platform
The storage cluster nodes are implemented as blades
that are very compact computer systems made from
commodity parts. The blades are clustered together
to provide a scalable platform. Up to 11 blades fit into
a 4U (7 inches) high shelf chassis that provides dual
power supplies, a high capacity battery, and one or two
16-port GE switches. The switches aggregate the GE
ports from the blades into a 4 GE trunk. The 2nd switch
provides redundancy and is connected to a 2nd GE port
on each blade. The battery serves as a UPS and powers
the shelf for a brief period of time (about five minutes) to
provide orderly system shutdown in the event of a power
failure. Any number of blades can be combined to create
very large storage systems.

The OSD StorageBlade module and metadata manager
DirectorBlade module use the same form factor blade
and fit into the same chassis slots. The StorageBlade
module contains a commodity processor, two disks,

ECC memory, and dual GE NICs. The DirectorBlade
module has a faster processor, more memory, dual GE
NICs, and a small private disk. In addition to metadata
management, DirectorBlades also provide NFS and
CIFS service, and their large memory is used as a data
cache when serving these protocols. Details of the
different blades used in the performance experiments
are given in Appendix I.

Any number of shelf chassis can be grouped into the
same storage cluster. A shelf typically has one or two
DirectorBlade modules and 9 or 10 StorageBlade
modules. A shelf with 10 StorageBlade modules
contains 5 to 15 TB of raw storage in 4U of rack space.
Customer installations range in size from 1 shelf to
around 50 shelves, although there is no enforced limit
on system size.

While the hardware is essentially a commodity PC (i.e.,
no ASICs), there are two aspects of the hardware that
simplified our software design. The first is the integrated
UPS in the shelf chassis that makes all of main memory
NVRAM. The metadata managers do fast logging to
memory and reflect that to a backup with low latency
network protocols. OSDFS buffers write data so it can
efficiently manage block allocation. The UPS powers the
system for several minutes to protect the system as it
shuts down cleanly after a power failure. The metadata
managers flush their logs to a local disk, and OSDFS
flushes writes through to disk. The logging mechanism
is described and measured in detail later in the paper.
The system monitors the battery charge level, and will
not allow a shelf chassis to enter service without an
adequately charged battery to avoid data loss during
back-to-back power failures.

The other important aspect of the hardware is that
blades are a Field Replaceable Unit (FRU). Instead of
trying to repair a blade, if anything goes wrong with the
hardware, the whole blade is replaced. We settled on
a two-drive storage blade as a compromise between
cost, performance, and reliability. Having the blade as a
failure domain simplifies our fault tolerance mechanisms,
and it provides a simple maintenance model for system
administrators. Reliability and data reconstruction are
described and measured in detail later in the paper.

1.888.PANASAS www.panasas.com

5

Scalable Performance of the Panasas Parallel File System

3 Storage Management
Traditional storage management tasks involve
partitioning available storage space into LUNs (i.e.,
logical units that are one or more disks, or a subset of a
RAID array), assigning LUN ownership to different hosts,
configuring RAID parameters, creating file systems
or databases on LUNs, and connecting clients to the
correct server for their storage. This can be a labor-
intensive scenario. We sought to provide a simplified
model for storage management that would shield the
storage administrator from these kinds of details and
allow a single, part-time admin to manage systems that
were hundreds of terabytes in size.

The Panasas storage system presents itself as a file
system with a POSIX interface, and hides most of the
complexities of storage management. Clients have a
single mount point for the entire system. The /etc/fstab
file references the cluster manager, and from
that the client learns the location of the metadata
service instances. The administrator can add storage
while the system is online, and new resources are
automatically discovered. To manage available storage,
we introduced two basic storage concepts: a physical
storage pool called a BladeSet, and a logical quota tree
called a Volume.

The BladeSet is a collection of StorageBlade modules
in one or more shelves that comprise a RAID fault
domain. We mitigate the risk of large fault domains with
the scalable rebuild performance described in Section
4.2. The BladeSet is a hard physical boundary for the
volumes it contains. A BladeSet can be grown at any
time, either by adding more StorageBlade modules, or
by merging two existing BladeSets together.

The Volume is a directory hierarchy that has a quota
constraint and is assigned to a particular BladeSet.
The quota can be changed at any time, and capacity is
not allocated to the Volume until it is used, so multiple
volumes compete for space within their BladeSet
and grow on demand. The files in those volumes are
distributed among all the StorageBlade modules in the
BladeSet.

Volumes appear in the file system name space as
directories. Clients have a single mount point for
the whole storage system, and volumes are simply
directories below the mount point. There is no need to
update client mounts when the admin creates, deletes,
or renames volumes.

Each Volume is managed by a single metadata manager.
Dividing metadata management responsibility along
volume boundaries (i.e., directory trees) was done
primarily to keep the implementation simple. We figured
that administrators would introduce volumes (i.e., quota
trees) for their own reasons, and this would provide an
easy, natural boundary. We were able to delay solving
the multi-manager coordination problems created when
a parent directory is controlled by a different metadata
manager than a file being created, deleted, or renamed
within it. We also had a reasonable availability model for
metadata manager crashes; well-defined subtrees would
go offline rather than a random sampling of files. The file
system recovery check implementation is also simplified;
each volume is checked independently (and in parallel
when possible), and errors in one volume don’t affect
availability of other volumes. Finally, clients bypass the
metadata manager during read and write operations,
so the metadata manager’s load is already an order of
magnitude smaller than a traditional file server storing
the same number of files. This reduces the importance
of fine-grain metadata load balancing. That said,
uneven volume utilization can result in uneven metadata
manager utilization. Our protocol allows the metadata
manager to redirect the client to another manager to
distribute load, and we plan to exploit this feature in the
future to provide finer-grained load balancing.

While it is possible to have a very large system with
one BladeSet and one Volume, and we have customers
that take this approach, we felt it was important for
administrators to be able to configure multiple storage
pools and manage quota within them. Our initial
model only had a single storage pool: a file would be
partitioned into component objects, and those objects
would be distributed uniformly over all available storage
nodes. Similarly, metadata management would be
distributed by randomly assigning ownership of new
files to available metadata managers. This is similar to

1.888.PANASAS www.panasas.com

6

Scalable Performance of the Panasas Parallel File System

the Ceph model [Weil06]. The attraction of this model
is smooth load balancing among available resources.
There would be just one big file system, and capacity
and metadata load would automatically balance.
Administrators wouldn’t need to worry about running out
of space, and applications would get great performance
from large storage systems.

There are two problems with a single storage pool: the
fault and availability model, and performance isolation
between different users. If there are ever enough faults
to disable access to some files, then the result would
be that a random sample of files throughout the storage
system would be unavailable. Even if the faults were
transient, such as a node or service crash and restart,
there will be periods of unavailability. Instead of having
the entire storage system in one big fault domain, we
wanted the administrator to have the option of dividing
a large system into multiple fault domains, and of having
a well defined availability model in the face of faults. In
addition, with large installations the administrator can
assign different projects or user groups to different
storage pools. This isolates the performance and
capacity utilization among different groups.

Our storage management design reflects a compromise
between the performance and capacity management
benefits of a large storage pool, the backup and restore
requirements of the administrator, and the complexity
of the implementation. In practice, our customers use
BladeSets that range in size from a single shelf to more
than 20 shelves, with the largest production Bladeset
being about 50 shelves, or 500 StorageBlade modules
and 50 DirectorBlade modules. The most common
sizes, however, range from 5 to 10 shelves. While we
encourage customers to introduce Volumes so the
system can better exploit the DirectorBlade modules, we
have customers that run large systems (e.g., 20 shelves)
with a single Volume.

3.1 Automatic Capacity Balancing
Capacity imbalance occurs when expanding a BladeSet
(i.e., adding new, empty storage nodes), merging two
BladeSets, and replacing a storage node following a
failure. In the latter scenario, the imbalance is the result

of our RAID rebuild, which uses spare capacity on every
storage node rather than dedicating a specific “hot
spare” node. This provides better throughput during
rebuild (see section 4.2), but causes the system to have
a new, empty storage node after the failed storage node
is replaced. Our system automatically balances used
capacity across storage nodes in a BladeSet using two
mechanisms: passive balancing and active balancing.

Passive balancing changes the probability that a storage
node will be used for a new component of a file, based
on its available capacity. This takes effect when files
are created, and when their stripe size is increased to
include more storage nodes. Active balancing is done by
moving an existing component object from one storage
node to another, and updating the storage map for the
affected file. During the transfer, the file is transparently
marked read-only by the storage management layer, and
the capacity balancer skips files that are being actively
written. Capacity balancing is thus transparent to file
system clients.

Capacity balancing can serve to balance I/O load
across the storage pool. We have validated this in large
production systems. Of course there can always be
transient hot spots based on workload. It is important to
avoid long term hot spots, and we did learn from some
mistakes. The approach we take is to use a uniform
random placement algorithm for initial data placement,
and then preserve that during capacity balancing. The
system must strive for a uniform distribution of both
objects and capacity. This is more subtle than it may
appear, and we learned that biases in data migration
and placement can cause hot spots.

Initial data placement is uniform random, with the
components of a file landing on a subset of available
storage nodes. Each new file gets a new, randomized
storage map. However, the uniform random distribution
is altered by passive balancing that biases the creation
of new data onto emptier blades. On the surface, this
seems reasonable. Unfortunately, if a single node in
a large system has a large bias as the result of being
replaced recently, then it can end up with a piece of
every file created over a span of hours or a few days.
In some workloads, recently created files may be hotter

1.888.PANASAS www.panasas.com

7

Scalable Performance of the Panasas Parallel File System

than files created several weeks or months ago. Our
initial implementation allowed large biases, and we
occasionally found this led to a long-term hot spot on a
particular storage node. Our current system bounds the
effect of passive balancing to be within a few percent
of uniform random, which helps the system fine tune
capacity when all nodes are nearly full, but does not
cause a large bias that can lead to a hot spot.

Another bias we had was favoring large objects for
active balancing because it is more efficient. There is
per-file overhead to update its storage map, so it is more
efficient to move a single 1 GB component object than
to move 1000 1 MB component objects. However,
consider a system that has relatively few large files that
are widely striped, and lots of other small files. When it
is expanded from N to N+M storage nodes (e.g., grows
from 50 to 60), should the system balance capacity by
moving a few large objects, or by moving many small
objects? If the large files are hot, it is a mistake to bias
toward them because the new storage nodes can get
a disproportionate number of hot objects. We found
that selecting a uniform random sample of objects from
the source blades was the best way to avoid bias and
inadvertent hot spots, even if it means moving lots of
small objects to balance capacity.

4 Object RAID and Reconstruction
We protect against loss of a data object or an entire
storage node by striping files across objects stored on
different storage nodes, using a fault-tolerant striping
algorithm such as RAID-1 or RAID-5. Small files are
mirrored on two objects, and larger files are striped
more widely to provide higher bandwidth and less
capacity overhead from parity information. The per-file
RAID layout means that parity information for different
files is not mixed together, and easily allows different
files to use different RAID schemes alongside each
other. This property and the security mechanisms of the
OSD protocol [Gobioff97] let us enforce access control
over files even as clients access storage nodes directly.
It also enables what is perhaps the most novel aspect
of our system, client-driven RAID. That is, the clients
are responsible for computing and writing parity. The
OSD security mechanism also allows multiple metadata

managers to manage objects on the same storage
device without heavyweight coordination or interference
from each other.

Client-driven, per-file RAID has four advantages for
large-scale storage systems. First, by having clients
compute parity for their own data, the XOR power of the
system scales up as the number of clients increases.
We measured XOR processing during streaming write
bandwidth loads at 7% of the client’s CPU, with the rest
going to the OSD/iSCSI/TCP/IP stack and other file
system overhead. Moving XOR computation out of the
storage system into the client requires some additional
work to handle failures. Clients are responsible for
generating good data and good parity for it. Because
the RAID equation is per-file, an errant client can only
damage its own data. However, if a client fails during a
write, the metadata manager will scrub parity to ensure
the parity equation is correct.

The second advantage of client-driven RAID is that
clients can perform an end-to-end data integrity check.
Data has to go through the disk subsystem, through the
network interface on the storage nodes, through the
network and routers, through the NIC on the client, and
all of these transits can introduce errors with a very low
probability. Clients can choose to read parity as well
as data, and verify parity as part of a read operation. If
errors are detected, the operation is retried. If the error
is persistent, an alert is raised and the read operation
fails. We have used this facility to track down flakey
hardware components; we have found errors introduced
by bad NICs, bad drive caches, and bad customer
switch infrastructure. While file systems like ZFS [ZFS]
maintain block checksums within a local file system,
which does not address errors introduced during the
transit of information to a network client. By checking
parity across storage nodes within the client, the system
can ensure end-to-end data integrity. This is another
novel property of per-file, client-driven RAID.

Third, per-file RAID protection lets the metadata
managers rebuild files in parallel. Although parallel
rebuild is theoretically possible in block-based RAID,
it is rarely implemented. This is due to the fact that the
disks are owned by a single RAID controller, even in

1.888.PANASAS www.panasas.com

8

Scalable Performance of the Panasas Parallel File System

dual-ported configurations. Large storage systems have
multiple RAID controllers that are not interconnected.
Since the SCSI Block command set does not provide
fine-grained synchronization operations, it is difficult for
multiple RAID controllers to coordinate a complicated
operation such as an online rebuild without external
communication. Even if they could, without connectivity
to the disks in the affected parity group, other RAID
controllers would be unable to assist. Even in a high-
availability configuration, each disk is typically only
attached to two different RAID controllers, which limits
the potential speedup to 2x.

When a StorageBlade module fails, the metadata
managers that own Volumes within that BladeSet
determine what files are affected, and then they farm
out file reconstruction work to every other metadata
manager in the system. Metadata managers rebuild their
own files first, but if they finish early or do not own any
Volumes in the affected Bladeset, they are free to aid
other metadata managers. Declustered parity groups
[Holland92] spread out the I/O workload among all
StorageBlade modules in the BladeSet. The result
is that larger storage clusters reconstruct lost data
more quickly. Scalable reconstruction performance is
presented later in this paper.

The fourth advantage of per-file RAID is that
unrecoverable faults can be constrained to individual
files. The most commonly encountered double-failure
scenario with RAID-5 is an unrecoverable read error
(i.e., grown media defect) during the reconstruction of
a failed storage device. The 2nd storage device is still
healthy, but it has been unable to read a sector, which
prevents rebuild of the sector lost from the first drive and
potentially the entire stripe or LUN, depending on the
design of the RAID controller. With block-based RAID, it
is difficult or impossible to directly map any lost sectors
back to higher-level file system data structures, so a full
file system check and media scan will be required to
locate and repair the damage. A more typical response
is to fail the rebuild entirely. RAID controllers monitor
drives in an effort to scrub out media defects and avoid
this bad scenario, and the Panasas system does media
scrubbing, too. However, with high capacity SATA
drives, the chance of encountering a media defect on

drive B while rebuilding drive A is still significant. With
per-file RAID-5, this sort of double failure means that
only a single file is lost, and the specific file can be
easily identified and reported to the administrator. While
block-based RAID systems have been compelled to
introduce RAID-6 (i.e., fault tolerant schemes that handle
two failures), we have been able to deploy highly reliable
RAID-5 systems with large, high performance storage
pools.

4.1 RAID I/O Performance
This section shows I/O performance as a function of the
size of the storage system, the number of clients, and
the striping configuration. Streaming I/O and random
I/O performance are shown.

Figure 2: IOzone Streaming Bandwidth MB/sec

Figure 2 charts iozone [Iozone] streaming bandwidth
performance from a cluster of up to 100 clients against
storage clusters of 1, 2, 4 and 8 shelves. Each client ran
two instances of iozone writing and reading a 4GB file
with 64KB record size. (Note that the X-axis is not linear;
there is a jump from 160 I/O streams to 200.) Appendix
I summarizes the details of the hardware used in the
experiments.

This is a complicated figure, but there are two basic
results. The first is that performance increases linearly
as the size of the storage system increases. The second

1.888.PANASAS www.panasas.com

9

Scalable Performance of the Panasas Parallel File System

is that write performance scales up and stays flat as the
number of clients increases, while the read performance
tails off as the number of clients increases. The write
performance curves demonstrate the performance
scalability. A one-shelf system delivered about 330
MB/sec, a two-shelf system delivered about 640 MB/
sec, a four-shelf system delivered about 1280 MB/sec,
and the eight-shelf system peaked around 2500 MB/
sec. This corresponds to a scaling factor that is 95% of
linear. In another experiment, a 30-shelf system achieved
just over 10 GB/sec of read performance, for a per-shelf
bandwidth of 330 MB/sec.

These kinds of results depend on adequate network
bandwidth between clients and the storage nodes. They
also require a 2-level RAID striping pattern for large files
to avoid network congestion [Nagle04]. For a large file,
the system allocates parity groups of 8 to 11 storage
nodes until all available storage nodes have been used.
Approximately 1 GB of data (2000 stripes) is stored in
each parity group before rotating to the next one. When
all parity groups have been used, the file wraps around
to the first group again. The system automatically selects
the size of the parity group so that an integral number
of them fit onto the available storage nodes with the
smallest unused remainder. The 2-level RAID pattern
concentrates I/O on a small number of storage nodes,
yet still lets large files expand to cover the complete
set of storage nodes. Each file has its own mapping of
parity groups to storage nodes, which diffuses load and
reduces hot-spotting.

The difference between read and write scaling stems
from the way OSDFS writes data. It performs delayed
block allocation for new data so it can be batched and
written efficiently. Thus new data and its associated
metadata (i.e., indirect blocks) are streamed out to the
next available free space, which results in highly efficient
utilization of the disk arm. Read operations, in contrast,
must seek to get their data because the data sets
are created to be too large to fit in any cache. While
OSDFS does object-aware read ahead, as the number
of concurrent read streams increases, it becomes more
difficult to optimize the workload because the amount of
read-ahead buffering available for each stream shrinks.

Figure 3: Mixed Random I/O MB/sec

The difference between read and write scaling stems
from the way OSDFS writes data. It performs delayed
block allocation for new data so it can be batched and
written efficiently. Thus new data and its associated
metadata (i.e., indirect blocks) are streamed out to the
next available free space, which results in highly efficient
utilization of the disk arm. Read operations, in contrast,
must seek to get their data because the data sets
are created to be too large to fit in any cache. While
OSDFS does object-aware read ahead, as the number
of concurrent read streams increases, it becomes more
difficult to optimize the workload because the amount of
read-ahead buffering available for each stream shrinks.

We tested two different hardware configurations:
StorageBlade modules with 512 MB of memory (labeled
as “.5GB $”) and with 2 GB of memory (labeled “2GB
$”). In each case the system had 9 StorageBlade
modules, so the total memory on the StorageBlade
modules was 4.5 GB and 18 GB, respectively. Two
different transfer sizes are used: 64 KB matches the
stripe unit size, and 4 KB is the underlying block size of
OSDFS. Obviously, the larger memory configuration is
able to cache most or all of the working set with small
numbers of clients. As the number of clients increases
such that the working set size greatly exceeds the

1.888.PANASAS www.panasas.com

10

Scalable Performance of the Panasas Parallel File System

cache, then the difference in cache size will matter
less. The throughput with 4 KB random I/O is very low
with inadequate cache. One client gets approximately
1.1 MB/sec, or about 280 4 KB ops/sec, and the rate
with 4 clients drops to 700 KB/sec, or about 175 ops/
sec. The 4 KB and 64 KB writes in the mixed workload
require four OSD operations to complete the RAID-
5 update to the full stripe (two reads, two writes). In
addition, we observed extra I/O traffic between the
client cache and the OSD due to read ahead and write
gathering optimizations that are enabled by default to
optimize streaming workloads. The iozone test does 1
million I/Os from each client in the 4 KB block and 4
GB file case, so we elected not to run that with 5 and
6 clients in the 512 MB cache configuration simply
because it ran too long.

4.2 RAID Rebuild Performance
RAID rebuild performance determines how quickly
the system can recover data when a storage node is
lost. Short rebuild times reduce the window in which
a second failure can cause data loss. There are three
techniques to reduce rebuild times: reducing the size
of the RAID parity group, declustering the placement
of parity group elements, and rebuilding files in parallel
using multiple RAID engines.

The rebuild bandwidth is the rate at which reconstructed
data is written to the system when a storage node is
being reconstructed. The system must read N times
as much as it writes, depending on the width of the
RAID parity group, so the overall throughput of the
storage system is several times higher than the rebuild
rate. A narrower RAID parity group requires fewer
read and XOR operations to rebuild, so will result in
a higher rebuild bandwidth. However, it also results in
higher capacity overhead for parity data, and can limit
bandwidth during normal I/O. Thus, selection of the
RAID parity group size is a tradeoff between capacity
overhead, on-line performance, and rebuild performance.

Understanding declustering is easier with a picture.
In Figure 4, each parity group has 4 elements, which
are indicated by letters placed in each storage device.
They are distributed among 8 storage devices. The
ratio between the parity group size and the available

storage devices is the declustering ratio, which in this
example is ½. In the picture, capital letters represent
those parity groups that all share the 2nd storage node.
If the 2nd storage device were to fail, the system would
have to read the surviving members of its parity groups
to rebuild the lost elements. You can see that the other
elements of those parity groups occupy about ½ of each
other storage device.

Figure 4: Declustered parity groups

For this simple example you can assume each parity
element is the same size so all the devices are filled
equally. In a real system, the component objects will
have various sizes depending on the overall file size,
although each member of a parity group will be very
close in size. There will be thousands or millions of
objects on each device, and the Panasas system uses
active balancing to move component objects between
storage nodes to level capacity.

Declustering means that rebuild requires reading
a subset of each device, with the proportion being
approximately the same as the declustering ratio. The
total amount of data read is the same with and without
declustering, but with declustering it is spread out over
more devices. When writing the reconstructed elements,
two elements of the same parity group cannot be
located on the same storage node. Declustering leaves
many storage devices available for the reconstructed
parity element, and randomizing the placement of each
file’s parity group lets the system spread out the write
I/O over all the storage. Thus declustering RAID parity

1.888.PANASAS www.panasas.com

11

Scalable Performance of the Panasas Parallel File System

groups has the important property of taking a fixed
amount of rebuild I/O and spreading it out over more
storage devices.

Having per-file RAID allows the Panasas system to
divide the work among the available DirectorBlade
modules by assigning different files to different
DirectorBlade modules. This division is dynamic with
a simple master/worker model in which metadata
services make themselves available as workers, and
each metadata service acts as the master for the
volumes it implements. By doing rebuilds in parallel on
all DirectorBlade modules, the system can apply more
XOR throughput and utilize the additional I/O bandwidth
obtained with declustering.

Figure 5: RAID Rebuild MB/sec vs. System Size

Figure 5 plots rebuild performance as the size of the
storage cluster grows from 1 DirectorBlade module
and 10 StorageBlade modules up to 12 DirectorBlade
modules and 120 StorageBlade modules. Each shelf
has 1 DirectorBlade module (1.6 GHz Xeon) and 10
StorageBlade modules. In this experiment, the system
was populated with 100 MB files or 1 GB files, and
each glyph in the chart represents an individual test.
The declustering ratio ranges from 0.9 to 0.075, and the
resulting reconstruction bandwidth ranges from 10 MB/
sec to 120 MB/sec. Declustering and parallel rebuild
gives nearly linear increase in rebuild performance as
the system gets larger.

The reduced performance at 8 and 10 shelves stems
from a wider stripe size. The system automatically picks
a stripe width from 8 to 11, maximizing the number of
storage nodes used while leaving at least one spare
location. For example, in a single-shelf system with 10
StorageBlade modules and 1 distributed spare, the
system will use a stripe width of 9. The distributed spare
allows reconstruction to proceed without replacing
a failed storage node; each file’s storage map skips
at least one available storage node, creating a virtual
spare location for that file that can be used to store a
rebuilt copy of a failed component. Each file has its own
spare location, which distributes the spares across the
Bladeset. The system reserves capacity on each storage
node to allow reconstruction. With 80 storage nodes
and 1 distributed spare, the system chooses a stripe
width of 11 so that 7 parity groups would fit, leaving 3
unused storage nodes. A width of 10 cannot be used
because there would be no unused storage nodes.
Table 1 lists the size of the parity group (i.e., stripe
width) as a function of the size of the storage pool.

Table 1: Default Parity Group Size

The variability in the 12-shelf result came from runs that
used 1 GB files and multiple Volumes. In this test, the
number of files impacted by the storage node failure
varied substantially among Volumes because only 30
GB of space was used on each storage node, and
each metadata manger only had to rebuild between 25
and 40 files. There is a small delay between the time a

1.888.PANASAS www.panasas.com

12

Scalable Performance of the Panasas Parallel File System

metadata manager completes its own Volume and the
time it starts working for other metadata managers; as
a result, not every metadata manager is fully utilized
towards the end of the rebuild. When rebuilding a nearly
full StorageBlade, this delay is insignificant, but in our
tests it was large enough to affect the results. Since we
compute bandwidth by measuring the total rebuild time
and dividing by the amount of data rebuilt, this uneven
utilization skewed the results lower. We obtained higher
throughput with less variability by filling the system with
10 times as many 100 MB files, which results in a more
even distribution of files among Volume owners, or by
using just a single Volume to avoid the scheduling issue.

Figure 6 shows the effect of RAID parity group width
on the rebuild rate. If a parity stripe is 6-wide, then the
5 surviving elements are read to recompute the missing
6th element. If a parity stripe is only 3-wide, then only 2
surviving elements are read to recompute the missing
element. Even though the reads can be issued in
parallel, there is more memory bandwidth associated
with reads, and more XOR work to do with the wider
stripe. Therefore narrower parity stripes are rebuilt more
quickly. The experiment confirms this.

Figure 6: RAID Rebuild MB/sec vs Stripe Width

We measured two systems. One had three DB-
100 DirectorBlade modules, and 8 SB-500a-XC
StorageBlade modules. The maximum stripe width in
this configuration is 7 to allow for the spare. The other

system had four DB-100a DirectorBlade modules and
18 SB-500a-XC StorageBlade modules in two shelves.
The maximum stripe width in this configuration was
8. Rebuild bandwidth increases with narrower stripes
because the system has to read less data to reconstruct
the same amount. The results also show that having
more DirectorBlade modules increases rebuild rate. This
is because there are more “reconstruction engines” that
can better exploit the bandwidth available in the system.
These results indicate that the rebuild performance of
the large systems shown in Figure 5 could be much
higher with 2 DirectorBlade modules per shelf, more
than twice the performance shown since those results
used older, first generation DirectorBlade modules.

5 Metadata Management
There are several kinds of metadata in our system.
These include the mapping from object IDs to sets
of block addresses, mapping files to sets of objects,
file system attributes such as ACLs and owners, file
system namespace information (i.e., directories), and
configuration/management information about the
storage cluster itself. One approach might be to pick a
common mechanism, perhaps a relational database, and
store all of this information using that facility. This shifts
the issues of scalability, reliability, and performance
from the storage system over to the database system.
However, this makes it more difficult to optimize the
metadata store for the unique requirements of each
type of metadata. In contrast, we have provided specific
implementations for each kind of metadata. Our
approach distributes the metadata management among
the object storage devices and metadata managers to
provide scalable metadata management performance,
and allows selecting the best mechanism for each
metadata type.

5.1 Block-level Metadata
Block-level metadata is managed internally by OSDFS,
our file system that is optimized to store objects.
OSDFS uses a floating block allocation scheme where
data, block pointers, and object descriptors are batched
into large write operations. The write buffer is protected
by the integrated UPS, and it is flushed to disk on
power failure or system panics. Our block allocation

1.888.PANASAS www.panasas.com

13

Scalable Performance of the Panasas Parallel File System

algorithms are similar to those of WAFL [Hitz94] and
LFS [Rosenblum90], although unlike LFS there is no
cleaner that compacts free space. Fragmentation was
an issue in early versions of OSDFS that used a first-fit
block allocator, but this has been significantly mitigated
in later versions that use a modified best-fit allocator.

OSDFS stores higher level file system data structures,
such as the partition and object tables, in a modified
BTree data structure. Block mapping for each object
uses a traditional direct/indirect/double-indirect scheme.
Free blocks are tracked by a proprietary bitmap-like data
structure that is optimized for copy-on-write reference
counting, part of OSDFS’s integrated support for
object- and partition-level copy-on-write snapshots.

Block-level metadata management consumes most of
the cycles in file system implementations [Gibson97].
By delegating storage management to OSDFS,
the Panasas metadata managers have an order of
magnitude less work to do than the equivalent SAN file
system metadata manager that must track all the blocks
in the system.

5.2 File-level Metadata
Above the block layer is the metadata about files. This
includes user-visible information such as the owner,
size, and modification time, as well as internal
information that identifies which objects store the file
and how the data is striped across those objects
(i.e., the file’s storage map). Our system stores this file
metadata in object attributes on two of the N objects
used to store the file’s data. The rest of the objects
have basic attributes like their individual length and
modify times, but the higher-level file system attributes
are only stored on the two attribute-storing components.
Note that the file’s length and modify time can be
deduced from the corresponding attributes on each
object, but for performance we store an explicit file-
level version of these attributes that is distinct from the
object-level attributes.

Remember the hot-spot problem caused by biasing file
creates toward an empty replacement blade? This is
because the first two component objects store the file-

level attributes, so they see more Set Attributes and Get
Attributes traffic than the rest of the components. Files
always start out mirrored on these first two attribute-
storing components, so the file create bias was creating
a metadata hot spot.

File names are implemented in directories similar to
traditional UNIX file systems. Directories are special files
that store an array of directory entries. A directory entry
identifies a file with a tuple of <serviceID, partitionID,
objectID>, and also includes two <osdID> fields that
are hints about the location of the attribute storing
components. The partitionID/objectID is the two-level
object numbering scheme of the OSD interface, and
we use a partition for each volume. Directories are
mirrored (RAID-1) in two objects so that the small write
operations associated with directory updates
are efficient.

Clients are allowed to read, cache and parse directories,
or they can use a Lookup RPC to the metadata manager
to translate a name to an <serviceID, partitionID,
objectID> tuple and the <osdID> location hints. The
serviceID provides a hint about the metadata manager
for the file, although clients may be redirected to the
metadata manager that currently controls the file. The
osdID hint can become out-of-date if reconstruction
or active balancing moves an object. If both osdID
hints fail, the metadata manager has to multicast a
GetAttributes to the storage nodes in the BladeSet to
locate an object. The partitionID and objectID are the
same on every storage node that stores a component
of the file, so this technique will always work. Once
the file is located, the metadata manager automatically
updates the stored hints in the directory, allowing future
accesses to bypass this step.

File operations may require several object operations.
Figure 7 shows the steps used in creating a file. The
metadata manager keeps a local journal to record
in-progress actions so it can recover from object
failures and metadata manager crashes that occur
when updating multiple objects. For example, creating
a file is fairly complex task that requires updating the
parent directory as well as creating the new file. There
are 2 Create OSD operations to create the first two

1.888.PANASAS www.panasas.com

14

Scalable Performance of the Panasas Parallel File System

components of the file, and 2 Write OSD operations,
one to each replica of the parent directory. As a
performance optimization, the metadata server also
grants the client read and write access to the file and
returns the appropriate capabilities to the client as
part of the FileCreate results. The server makes
record of these write capabilities to support error
recovery if the client crashes while writing the file.
Note that the directory update (step 7) occurs after the
reply, so that many directory updates can be batched
together. The deferred update is protected by the op-log
record that gets deleted in step 8 after the successful
directory update.

The metadata manager maintains an op-log that
records the object create and the directory updates
that are in progress. This log entry is removed when the
operation is complete. If the metadata service crashes
and restarts, or a failure event moves the metadata
service to a different manager node, then the op-log is
processed to determine what operations were active at
the time of the failure. The metadata manager rolls the
operations forward or backward to ensure the object
store is consistent. If no reply to the operation has
been generated, then the operation is rolled back. If a
reply has been generated but pending operations are
outstanding (e.g., directory updates), then the operation
is rolled forward.

The write capability is stored in a cap-log so that when
a metadata server starts it knows which of its files are
busy. In addition to the “piggybacked” write capability
returned by FileCreate, the client can also execute a
StartWrite RPC to obtain a separate write capability.
The cap-log entry is removed when the client releases
the write cap via an EndWrite RPC. If the client reports
an error during its I/O, then a repair log entry is made
and the file is scheduled for repair. Read and write
capabilities are cached by the client over multiple
system calls, further reducing metadata server traffic.

Our log implementation uses a fast (3 μsec updates)
in-memory logging mechanism that is saved to disk on
system shutdown, power failure, and software faults,
including kernel panics. In fail over configurations
this log is synchronously reflected to a remote peer’s

memory via a low-latency protocol (90 μsec update
over gigabit Ethernet). Software crashes are usually
handled by a restart and recovery from the local logs.
If a hardware fault or OS hang disables a DirectorBlade
module, then its backup takes over and recovers from
the log replica.

Figure 7: Creating a File

If the logs are unrecoverable, or there was no backup,
then a crash may have left the distributed object store in
an inconsistent state (e.g., a partially created file). These
inconsistencies are discovered and tolerated during
normal operation. In some cases the system can repair
the object during the file open operation. In other cases,
the system just fences the suspect objects and they
can be repaired later via an (offline) file system recovery
check facility that sweeps the object store, repairing
inconsistencies and rolling in-progress operations
forward or back. The optional recovery process runs at
about 800 files/sec, and can run in parallel over multiple
Volumes on different DirectorBlade modules.

The combination of fast in-memory logging to battery
backed memory, log replication to a remote peer, storing
metadata on objects, and an off-line repair process

1.888.PANASAS www.panasas.com

15

Scalable Performance of the Panasas Parallel File System

is a robust design point. The in-memory logging is
possible because of the integrated UPS that lets us
safely shut down our system. The remote backup guards
against outright hardware failure of the DirectorBlade
module. However, in any complex product, software
faults are a hazard. Our metadata manager runs as a
user-level application, so it can be killed and restarted
transparently and recover based on its logs. The NFS
gateway, which uses the kernel-resident client, can
be a source of kernel panics. Most of these have
been “clean” kernel panics where the system is able
to save the in-memory log contents. Finally, if all else
fails, we know we can run the recovery process, which
will restore the file system to a consistent state. It is
comforting to know that the metadata managers can all
halt and catch fire, and we can still recover the storage
system, since all of the file metadata is resident on the
storage nodes themselves.

5.3 File Metadata Performance
We measured metadata performance with the Metarates
application [Metarates]. This is an MPI application
that coordinates file system accesses from multiple
clients. Figure 8 shows Create and Utime performance
for fifteen 2.4 GHz Xeon clients against a single
DirectorBlade module. The Create operation creates an
empty file, and each client works in its own directory.
The Utime operation sets the timestamp attributes on a
file. Results are presented for the Panasas DirectFlow
protocol (DF) and the NFS protocol that uses the
gateway client on the DirectorBlade module. Two
different DirectorBlade models were measured: DB-
100 and DB-100a. We also measured an NFS server
running Linux with a locally attached RAID array.

The Panasas protocol performs better on Utime than
NFS because of the way attributes are managed on the
clients. The Panasas client can reliably cache attributes
because of a callback protocol from the stateful
Panasas metadata managers. The NFS clients need to
revalidate their cache with a GetAttr operation before
they can complete the SetAttr, so they perform twice as
many server operations to complete a Utime operation,
and hence the client’s throughput is reduced.

In the Linux NFS test the file server does synchronous
disk writes during CREATE and SETATTR operations,
as required by the stable-storage clause of the NFSv3
standard [Pawlowski94], with a clear performance
impact. In the Panasas system, the writes are buffered
in protected memory on the StorageBlade modules.
Updates are streamed in a log-fashion, and the
operation time is decoupled from disk I/O. Our create
algorithm is very robust, with journal records resident on
two DirectorBlade modules and objects created on two
StorageBlade modules before the operation returns to
the client. The latency for a single create is about
2 msec.

Some NFS servers optimize Create by logging them
in NVRAM and returning immediately. This is not done
in the Panasas system because clients must be able
to write directly to the storage nodes after the Create
operation returns from the metadata manager. While we
have considered granting create capabilities to clients
as an optimization, we have avoided the additional
complexity it adds to the protocol. Our metadata
manager creates the objects on storage before returning
to the client.

Figure 8: Metarates throughput (ops/sec)

15

1.888.PANASAS www.panasas.com

16

Scalable Performance of the Panasas Parallel File System

Figure 9: Metarates Create and Utime ops/sec

Figure 9 shows Create and Utime performance as the
number of clients increase. These operations involve
I/O operations to the StorageBlade modules. Create
does two object creates and two writes to the parent
directory. Utime does a set attributes to two objects.
The DirectorBlade and shelf correspond to the “DB-
100” in the first chart. The 2.4 GHz DirectorBlade
module is approaching saturation at 840 creates/sec
and 2000 utime/sec with 15 clients.

Figure 10: Metarates Stat ops/sec

Figure 10 shows Stat performance. The benchmark
has a single client create all the files, followed by all
the clients doing their Stat operations. The first client

always hits in its cache and consequently gets 45,000
Stat ops/sec. The other clients get 1,200 to 2,000 ops/
sec, since their operations involve a server round-trip.
The graph charts the Metarates “aggregate throughput”,
which is obtained by multiplying the slowest client
times the total number of clients. This metric may seem
unfair, but it represents the effective throughput for
barrier synchronized MPI applications. At two clients, for
example, one ran at 1,777 ops/sec, while the other ran
at 45,288 ops/sec, and the aggregate is reported as
3,554 ops/sec.

5.4 System-level Metadata
The final layer of metadata is information about the
overall system itself. One possibility would be to store
this information in objects and bootstrap the system
through a discovery protocol. The most difficult aspect
of that approach is reasoning about the fault model. The
system must be able to come up and be manageable
while it is only partially functional. We chose instead a
model with a small replicated set of system managers,
each that stores a replica of the system configuration
metadata.

Each system manager maintains a local database,
outside of the object storage system. We use Berkeley
DB to store tables that represent our system model. The
different system manager instances are members of a
replication set that use Lamport’s part-time parliament
(PTP) protocol [Lamport98] to make decisions and
update the configuration information. Clusters are
configured with one, three, or five system managers
so that the voting quorum has an odd number and
a network partition will cause a minority of system
managers to disable themselves.

System configuration state includes both static state,
such as the identity of the blades in the system, as
well as dynamic state such as the online/offline state
of various services and error conditions associated
with different system components. Each state update
decision, whether it is updating the admin password
or activating a service, involves a voting round and an
update round according to the PTP protocol. Database
updates are performed within the PTP transactions to
keep the databases synchronized. Finally, the system

1.888.PANASAS www.panasas.com

17

Scalable Performance of the Panasas Parallel File System

keeps backup copies of the system configuration
databases on several other blades to guard against
catastrophic loss of every system manager blade.

Blade configuration is pulled from the system managers
as part of each blade’s startup sequence. The initial
DHCP handshake conveys the addresses of the
system managers, and thereafter the local OS on each
blade pulls configuration information from the system
managers via RPC.

The cluster manager implementation has two
layers. The lower level PTP layer manages the voting
rounds and ensures that partitioned or newly added
system managers will be brought up-to-date with the
quorum. The application layer above that uses the
voting and update interface to make decisions.
Complex system operations may involve several steps,
and the system manager has to keep track of its
progress so it can tolerate a crash and roll back or
roll forward as appropriate.

For example, creating a volume (i.e., a quota-tree)
involves file system operations to create a top-level
directory, object operations to create an object partition
within OSDFS on each StorageBlade module, service
operations to activate the appropriate metadata
manager, and configuration database operations
to reflect the addition of the volume. Recovery is
enabled by having two PTP transactions. The initial
PTP transaction determines if the volume should be
created, and it creates a record about the volume that
is marked as incomplete. Then the system manager
does all the necessary service activations, file and
storage operations. When these all complete, a final
PTP transaction is performed to commit the operation.
If the system manager crashes before the final PTP
transaction, it will detect the incomplete operation the
next time it restarts, and then roll the operation forward
or backward.

We measured a simple PTP transaction that updates
an entry in the configuration database with a simple
test program that performs 1000 of these operations.
The cost of an update, which includes the RPC to the
system manager, the PTP voting round, and the BDB

update to a single table, is around 7 msec on our 2.4
GHz DirectorBlade modules. This cost is dominated
by a synchronous disk write in the BDB update. We
enabled synchronous disk writes in spite of the UPS so
that the system configuration database is highly reliable.
The cost doubles to 14 msec when there is a replication
set of 2, 3, 4, or 5 members because of an additional
table update performed by the PTP implementation.
The president of the PTP quorum performs RPCs in
parallel to the quorum members, so at these scales of
replication there is no performance difference between
having 2 or 5 members of the replication set.

Note that there is two or three orders of magnitude
difference between the logging performed by the file
system metadata manager and the voting transaction
performed by the cluster manager. The in-memory log
update is 3 microseconds, or 90 microseconds to
reflect that across the network. The PTP voting round
and BDB database update is 7 to 14 milliseconds.
These different mechanisms let us have a very
robust cluster management system and a very high
performance file system.

6 Related Work
The main file systems that are in production use with
high performance compute clusters are the Panasas
file system, Lustre [Lustre02], GPFS [Schmuck02],
and PVFS2 [PVFS2][Devulapalli07][Yu05]. Cope gives
some performance comparisons between Lustre, GPFS,
and PVFS2 [Cope06]. Lustre has a similar overall
architecture to Panasas, and both systems are based on
ideas from the CMU NASD work. Lustre uses relatively
larger object storage servers (OSS servers and OST
object stores), and can use simple striping across OST
but without active capacity balancing or extra parity
information. PVS2 also does simple striping across
storage nodes without redundancy. GPFS and Lustre
rely on block-based RAID controllers to handle disk
failure, whereas PVS2 typically uses local file systems
on compute nodes.

Clustered NFS systems include Isilon [Isilon], NetApp
GX [Klivanski06], and PolyServe[Polyserve]. These NFS
systems have limited scalability because each client

1.888.PANASAS www.panasas.com

18

Scalable Performance of the Panasas Parallel File System

must funnel its requests through a single access point,
which then forwards requests to the nodes that own
the data. The parallel NFS extension [Hildebrand05],
which will be part of NFSv4.1, may help these systems
overcome this limitation. The Panasas NFS export from
the DirectorBlade modules has similar characteristics to
these systems.

SAN file systems (e.g., CXFS [Shepard04], [IBRIX],
MPSFi [EMC], Oracle’s OCFS2 [Fasheh06], GFS2
[GFS2], ADIC StorNext) have non-standard clients, a
metadata manager node, and are block oriented. These
evolved from single-host file systems by introducing a
block manager, or metadata server. Block management
is generally a scalability limit because the metadata
manager has to track billions of blocks in a system of
any size.

GPFS is also a SAN file system, but its distributed lock
management scheme and the use of large blocks (256
K to 4 MB) help it scale up to support larger clusters.
GPFS uses a centralized token manager that delegates
fine-grained locks over blocks, inodes, attributes, and
directory entries. Lock delegation lets the first client
that accesses a resource become the lock manager
for it, which spreads out metadata management load.
There are workloads, however, that result in a significant
amount of traffic between lock owners and the token
manager as the system negotiates ownership of locks.
Nodes can be both clients and servers, although in large
systems there are typically a larger number of client-
only nodes, and a subset of nodes that control storage.
The services are fault tolerant via fail over protocols and
dual-porting of drives.

There are several research projects exploring object
storage, including Ceph [Weil06] and Usra Minor [Abd-
El-Malek05]. These systems have slightly different object
semantics and custom protocols. Usra Minor provides
versioning as a basic property of its objects. Ceph
uses a hash-based distribution scheme, and its object
servers propagate replicas to each other (i.e., there is
redundancy but no striping). Lustre uses a distributed
lock manager protocol in which clients, OSS, and the
metadata manager all participate. The Panasas object
model is based on the standard iSCSI/OSD command

set that we expect to be part of next generation
commodity storage devices.

Striping across data servers for increased bandwidth
was evaluated in several research systems. In the Zebra
file system [Hartman93], clients would generate a
stream of data containing a log of their writes to many
files. This log stream was striped across servers, and
a parity component was generated to allow recovery.
This approach combines parity information for all the
files in the log, which does not allow tuning the per-file
RAID configurations. The Cheops parallel file system
was layered over NASD and did provide per-file striping,
but not per-file RAID [Gibson98]. Isilon stripes files
across its storage nodes and uses RAID and Reed
Soloman encoding to protect against lost objects. Isilon
performance, however, is limited by its NFS interface.
The RAIF system [Jukov07] maps a file onto multiple
file system and allows striping. This is performed by a
stackable file system on the client. However, that work
doesn’t describe how to handle updates to shared
files by multiple clients. Lustre uses simple, RAID-0
striping across object storage servers, and depends
on RAID within the server to recover from disk failures,
and failover and dual ported drives between servers to
handle server failure. Recent versions of NetApp-GX
can stripe files and volumes across storage nodes.
It also provides facilities for migrating (i.e., copying)
file sets between servers to shift load, and it has the
ability to configure read-only replicas of a volume for
load-sharing, features similar to those introduced by
AFS [Howard88]. The Panasas approach to striping is
specifically designed to provide performance that scales
up to support very large systems with thousands of
active clients sharing the same set of files.

Google FS [Ghemawat03] is a user-level file system
implemented in application-specific libraries. Google FS
uses replication for fault tolerance so it can tolerate loss
of a storage node. Clients are responsible for pushing
data to replicas, and then notifying the metadata
manager when the updates are complete. Google FS
provides application-specific append semantics to
support concurrent updates. Panasas has fully serialized
updates to provide POSIX semantics, and another
concurrent write mode that optimizes interleaved,

1.888.PANASAS www.panasas.com

19

Scalable Performance of the Panasas Parallel File System

strided write patterns to a single file from many
concurrent clients.

Of these systems, only Panasas, Isilon, Google, and
Ceph use redundant data on different storage nodes
to recover from drive failures. The other systems use
RAID controllers, or software-RAID within a storage
node, or no redundancy at all. The other differentiator
is the division of metadata management among nodes.
Panasas divides ownership by file trees, allowing
multiple metadata managers to manage the overall
system. Most other systems have a single metadata
manager, including Lustre, IBRIX, and the other SAN file
systems. GPFS has a hybrid scheme with a single token
manager that can delegate metadata responsibility.
Ceph uses a fine-grained hashing scheme to distribute
metadata ownership. 1. For an application performing
single-threaded or serial I/O, we saw strong throughput
at 356 MB/S for writes, and over 400 MB/S for reads.

7 Conclusions
This paper has presented the design of the Panasas
parallel file system and given several performance
measurements that illustrate its scalability. The design
uses storage nodes that run an OSDFS object store,
and manager nodes that run a file system metadata
manager, a cluster manager, and a Panasas file system
client that can be re-exported via NFS and CIFS.
Scalability comes from the balanced nature of each
storage node, which includes disk, CPU, memory, and
network bandwidth resources. The Panasas storage
cluster is a parallel machine for block allocation because
each storage node manages its own drives privately, and
it is a parallel machine for RAID rebuild because each
manager blade participates in the rebuild of declustered
parity groups that are spread across the storage cluster.

Good performance comes from leveraging non-volatile
memory to hide latency and protect caches, and the
ability to distribute the file server metadata at the block,
file, and system level across the storage nodes and
manager nodes within the storage cluster. Striping
files over objects with per-file RAID protection allows
scalable performance for environments with many
clients, as well as for the rebuild rates of failed OSDs.

We have shown I/O and metadata performance results
for systems ranging in size from 11 nodes to 132 nodes
in the storage cluster, and from 1 to 100 file system
clients.

Appendix I: Experimental Details
This section summarizes the hardware configuration
used for the different experiments. Because we have an
assorted collection of hardware that spans 3 product
generations in our labs, some of the experiments use
different hardware.

The StorageBlade module contains a fairly low-powered
x86 processor, two disks (250 GB, 500 GB or 750
GB 7200 RPM SATA drives), 512 MB or 2 GB ECC
memory, and two GE NICs. The DirectorBlade module
has a faster x86 processor, 4 GB ECC memory,
two GE NICs, and a small PATA or SATA disk. The
specific configuration of each blade model used in our
experiments is listed in Table 2. Note that despite having
a slower clock speed, the CPU in the DB-100a is about
30% faster for our code than the CPU in the DB-100.

Table 2: Blade hardware details

The clients are single CPU, 2.4 GHz or 2.8 GHz Xeon
with 1 GE NIC.

19

1.888.PANASAS www.panasas.com

20

Scalable Performance of the Panasas Parallel File System

The networking environment is 1GE using a Force10
E1200 as a core switch. Client nodes are directly
connected to the core switch. Each shelf chassis has
a 4 GE trunked connection to the core switch, unless
otherwise noted.

Experiment 1. Scaling clients against different sized
storage systems. Up to 100 clients were used, each
running two instances of iozone. We used flags -i 0 -i 1
-e -c -r 64k -s 5g –w and a -+m clients file that put two
threads on each client. The StorageBlade modules are
SB-160. Each shelf has one first generation DB module
and 10 StorageBlade modules, although only a single
metadata service is involved in this test.

Experiment 2. Random I/O vs storage node cache
memory and number of clients. We used iozone flags -i
0 -i 1 -i 2 -i 8 -s 4g and reported the mixed I/O number.
There are 9 SB-500a or SB-500a-XC StorageBlade
modules and 2 DB-100 DirectorBlade modules, but only
a single DirectorBlade was active. The shelves only had
a single GE uplink.

Experiment 3. Scalable RAID Rebuild. 10 to 120
SB-160 StorageBlade modules, and 1 to 12 DB
DirectorBlade modules. We measured the capacity used
on a failed storage node, and divided by the wall clock
time reported by the system to complete reconstruction.

Experiment 4. RAID rebuild vs. stripe width. The 3+8
system had three DB-100 DirectorBlade modules, and
8 SB-500a-XC StorageBlade modules. The 4+18 had
four DB-100a DirectorBlade modules and 18 SB-500a-
XC StorageBlade modules in two shelves.

Experiment 5. Metarates performance. The two different
DirectorBlades were the DB-100 and DB-100a. The
NFS server was running Red Hat Enterprise Linux 4
(2.6.9-42.ELsmp) on a 4-way 2.6 GHz Opteron 8218
machine with four 10K RPM SAS drives in a RAID-0
configuration and the ext3 file system.

References
Abd-El-Malek05, Michael Abd-El-Malek, William V.
Courtright II, Chuck Cranor, Gregory R. Ganger, James

Hendricks, Andrew J. Klosterman, Michael Mesnier,
Manish Prasad, Brandon Salmon, Raja R. Sambasivan,
Shafeeq Sinnamohideen, John D. Strunk, Eno Thereska,
Matthew Wachs, Jay J. Wylie. Ursa Minor: Versatile
Cluster-based Storage. Proceedings of the 4th USENIX
Conference on File and Storage Technology (FAST ‘05).
San Francisco, CA. December 13-16, 2005.

Cope06. J. Cope, M. Oberg, H.M. Tufo, and
M. Woitaszek, Shared Parallel File Systems in
Heterogeneous Linux Multi-Cluster Environments,
proceedings of the 6th LCI International Conference on
Linux Clusters: The HPC Revolution.

Devulapalli07, A. Devulapalli, D. Dalessandro, P.
Wyckoff, N. Ali, P. Sadayappan. Integrating Parallel File
Systems with Object-Based Storage Devices, ACM/
IEEE International Conference for High Performance
Computing, Networking, Storage and Analysis (SC
2007), Reno, NV, November 2007.

EMC. EMC Celerra Multi Path File System MPFS/
MPFSi, www.emc.com/products/software/celerra_mpfs/

Fasheh06, Mark Fasheh, OCFS2: The Oracle
Clustered File System, Version 2, Proceedings of the
2006 Linux Symposium, pp 289-302

GFS2. http://sourceware.org/cluster/

Ghemawat03, Sanjay Ghemawat, Howard Gobioff,
Shun-Tak Leung. The Google File System, Proceedings
of the 19th ACM Symposium on Operating Systems
Principles, 2003, pp 20-43.

Gibson97. Garth A. Gibson, David Nagle, Khalil Amiri,
Fay W. Chang, Eugene M. Feinberg, Howard Gobioff,
Chen Lee, Berend Ozceri, Erik Riedel, David Rochberg,
Jim Zelenka: File Server Scaling with Network-Attached
Secure Disks. Proceedings of SIGMETRICS, 1997,
Seattle WA. pp 272-284

Gibson98, Gibson, G. A., Nagle, D. F., Amiri, K., Butler,
J., Chang, F. W., Gobioff, H., Hardin, C., Riedel, E.,
Rochberg, D., and Zelenka, J. 1998. A cost-effective,
high-bandwidth storage architecture. In Proceedings

1.888.PANASAS www.panasas.com

21

Scalable Performance of the Panasas Parallel File System

of the Eighth international Conference on Architectural
Support For Programming Languages and Operating
Systems (San Jose, California, United States, October
02 - 07, 1998). ASPLOS-VIII

Gobioff97, Gobioff, H., Gibson, G., Tygar, D., Security
for Network Attached Storage Devices, TR CMU-
CS-97- 185, Oct 1997.

Hartman93, J. Hartman and J. Ousterhout. The Zebra
Striped Network File System. Proc. 14-th Symposium
on Operating Systems Principles, pages 29-43,
December 1993

Hildebrand05, D. Hildebrand, P. Honeyman, Exporting
Storage Systems in a Scalable Manner with pNFS,
MSST 2005.
Hitz94, D. Hitz, J. Lau, and M. Malcolm, File System
Design for an NFS File Server Appliance, Proceedings
of the Winter 1994 USENIX Conference, San
Francisco, CA, January 1994, 235-246

Holland92. Mark Holland, Garth Gibson. Parity
declustering for continuous operation in redundant disk
arrays. Proceedings of the 5th international conference
on Architectural Support for Programming Languages
and Operating Systems (ASPLOS)

Howard88, Howard, J.H., Kazar, M.L., Menees, S.G.,
Nichols, D.A., Satyanarayanan, M., Sidebotham, R.N.,
West, M.J. “Scale and Performance in a Distributed File
System” ACM Transactions on Computer Systems Feb.
1988, Vol. 6, No. 1, pp. 51-81.

IBRIX. http://www.ibrix.com/

Iozone. http://www.iozone.org/

Isilon. http://www.isilon.com/

Jukov07, Nikolai Joukov, Arun M. Krishnakumar,
Chaitanya Patti, Abhishek Rai, Sunil Satnur, Avishay
Traeger, and Erez Zadok, RAIF: Redundant Array of
Independent Filesystems, Proceedings of the 24th
IEEE Conference on Mass Storage Systems and
Technologies (MSST 2007)

Klivansky06, Miroslav Klivansky, Introduction to Data
ONTAP GX, http://www.netapp.com/library/tr/3468.pdf,
April 2006

Lamport98, L. Lamport. “The Part-Time Parliament.”
ACM Transactions on Computer Systems, Vol. 16 No.
2, 133-169, 1998

Lustre02, Cluster File Systems Inc., Lustre: A scalable
high-performance file system, lustre.org/documentation.
html.

Metarates. www.cisl.ucar.edu/css/software/metarates/

Nagle04 David Nagle, Denis Serenyi, and Abbie
Matthews. The Panasas ActiveScale storage cluster—
delivering scalable high bandwidth storage. In
Proceedings of the 2004 ACM/IEEE Conference on
Supercomputing (SC ‘04), November 2004

OSD04, Object-Based Storage Device Commands
(OSD), ANSI standard INCITS 400-2004.

Pawlowski94, B. Pawlowski, C. Juszczak, P. Staubach,
C. Smith, D. Lebel, and D. Hitz. NFS version3: Design
and implementation. In Proceedings of the Summer
1994 USENIX Technical Conference, pp 137-151,
1994.

PVFS2, The Parallel Virtual File System, version 2,
http://www.pvfs.org/pvfs2.
PolyServe, http://www.polyserve.com

Rosenblum90, M. Rosenblum, J. Ousterhout, The LFS
Storage Manager, Proceedings of the 1990 Summer
Usenix, Anaheim, CA, June 1990, 315-324.

Schmuck02, Frank Schmuck, Roger Haskin, GPFS: A
Shared-Disk File System for Large Computing Clusters,
FAST 02.

Shepard04, Laura Shepard, Eric Eppe, SGI
InfiniteStorage Shared Filesystem CXFS: A High-
Performance, Multi-OS Filesystem, 2004, www.sgi.
com/pdfs/2691.pdf.

0
62

32
01

1
10

6
6

| Phone: 1.888.PANASAS | www.panasas.com

© 2010 Panasas Incorporated. All rights reserved. Panasas is a trademark of Panasas, Inc. in the United States and other countries.

Scalable Performance of the Panasas Parallel File System

SNIA SNIA-OSD Working Group, www.snia.org/osd

Weil06, Sage Weil, Scott Brandt, Ethan Miller, Darrell
Long, Carlos Maltzahn, Ceph: A Scalable, High-
Performance Distributed File System, Proceedings of
the 7th Conference on Operating Systems Design and
Implementation (OSDI ’06), November 2006.

Welch07. Brent Welch, Integrated System Models for
Reliable Petascale Storage Systems, Proceedings of
the Petascale Data Storage Workshop, Supercomputing
’07, Reno NV. Novermber 2007.

Yu05, Weikuan Yu, Shuang Liang, Dhabaleswar Panda,
High Performance Support of Parallel Virtual File
System (PVFS2) over Quadrics, Proceedings of ICS05,
Cambridge MA, June 20-22, 2005.

ZFS www.sun.com/software/solaris/ds/zfs.jsp, www.
opensolaris.org/os/community/zfs/docs/zfs_last.pdf

