

Cluster Scalability of Implicit and Implicit-Explicit LS-DYNA Simulations Using a Parallel File System

Stan Posey Director, Industry and Applications Development Panasas, Fremont, CA, USA

Bill Loewe, Ph.D. Sr. Technical Staff, Applications Engineering Panasas, Fremont, CA, USA

Paul Calleja, Ph.D. Director, HPC Services University of Cambridge, Cambridge, UK

Panasas Overview and LSTC Alliance

- Private, venture-backed company based in Silicon Valley, founded in 1999 by CTO Garth Gibson – a Professor at CMU and Co-inventor of RAID
- Panasas technology combines a parallel file system with a storage hardware architecture for the market's first HPC storage appliance
- Panasas has a global network of direct and channel sales representatives
 - Global resellers include Dell, SGI, and Penguin among others
 - Panasas awarded "Top 5 Vendors to Watch in 2009" at SC08
- Panasas and LSTC have a business and technology alliance since 2006:
 - Panasas has made critical investments in loaner systems and engineering
 - Most leverage with LS-DYNA implicit, but all CAE workloads will benefit

UNIVERSITY OF

Panasas and LSTC have many joint customers, samples include: Pratt & Whitney Canada

Sgi

A

YUNDRI

Panasas at 7th European LS-DYNA Conference

panasa

(BOEING

Honeywell

Select Panasas Customers

- Automotive

Select Panasas Customers

TRE

Media

CAE Problem Statement: I/O Bottlenecks panasas

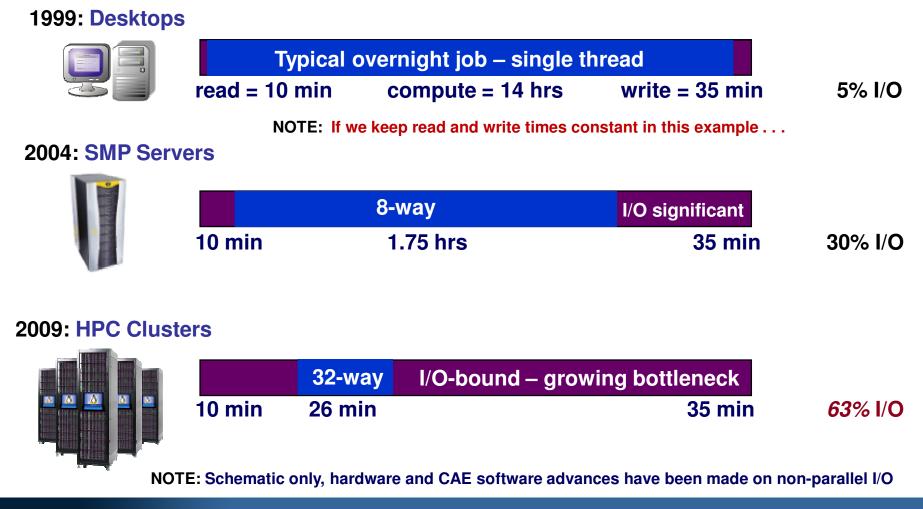
Progression of a <u>Single</u> Job Profile for CAE with serial I/O

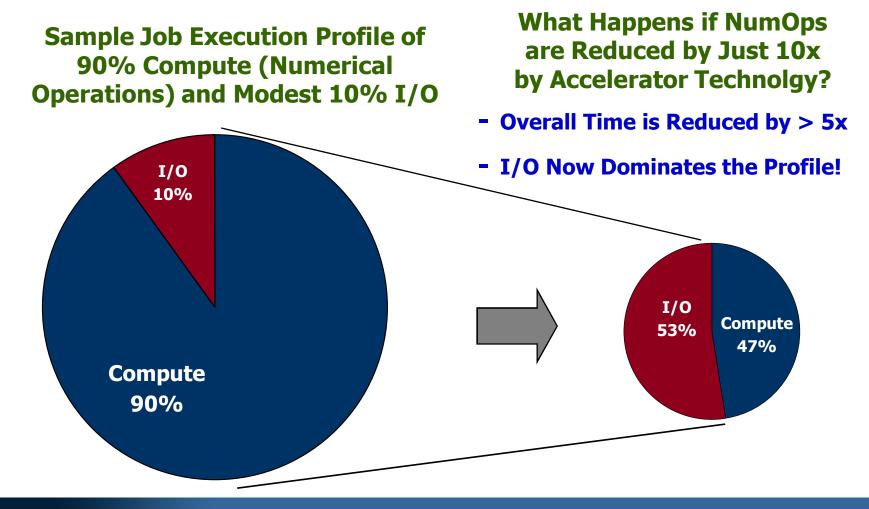
1999: Desktops

Typical c	nread		
read = 10 min	compute = 14 hrs	write = 35 min	5% I/O

CAE Problem Statement: I/O Bottlenecks panasas

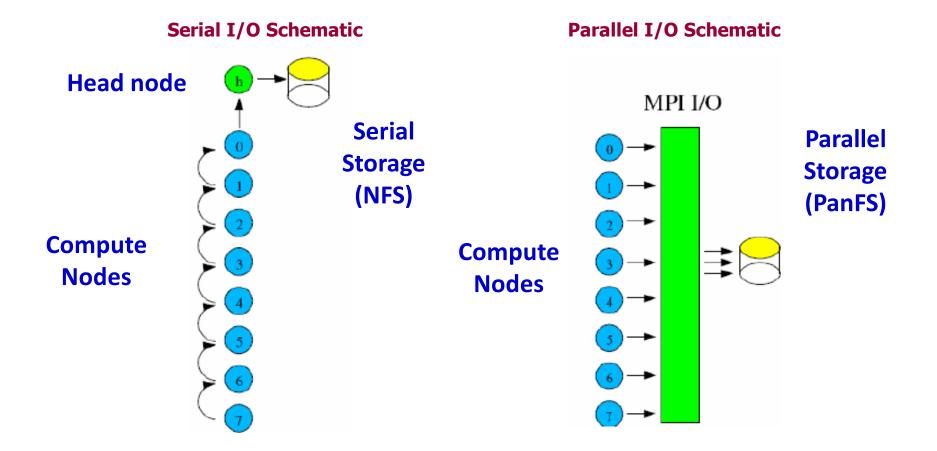
Progression of a <u>Single</u> Job Profile for CAE with serial I/O

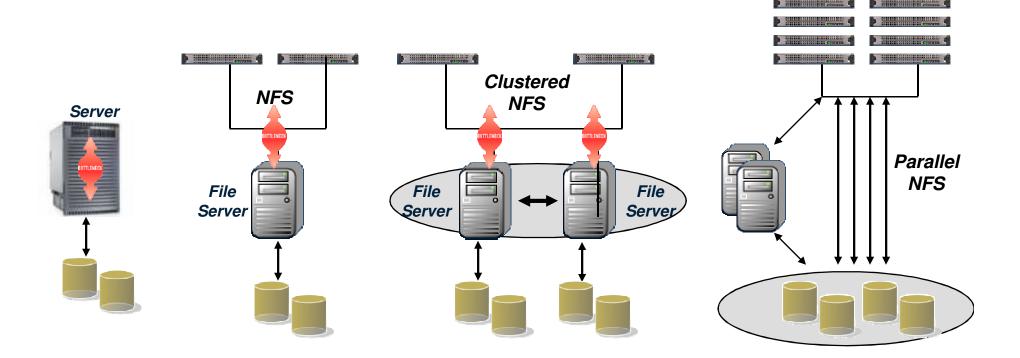

1999: Desktops



CAE Problem Statement: I/O Bottlenecks panasas

Progression of a Single Job Profile for CAE with serial I/O


What Does 10x Acceleration Mean for I/O?


panasas

CAE Migrating to Parallel I/O and Storage panasas

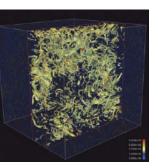
Schematic of Solution Write for a Parallel CAE Computation

Parallel I/O Requires Parallel Storage

NAS: Network Attached Storage

Clustered NAS: Multiple NAS file servers managed as one Parallel Storage: File server not in data path. Performance bottleneck eliminated.

panasas


State of HPC: Petaflop Scalability Arrives panasas

Los Alamos

Los Alamos National Lab

Advanced Simulation and Computing Center

Design

Hanufacture

- Roadrunner Tops the Top 500 in June 2008
 - **Total 116,640 Cores for DOE weapons research**
 - Storage: Panasas PanFS parallel file system and more than 2 Petabytes of capacity
- Applications at Petascale Level
 - MILAGRO Radiation transport implicit MC
 - VPIC Magneto hydrodynamics particle-in-cell
 - SPaSM Molecular dynamics of materials
 - Sweep3D Neutron transport

CAE Solution Focus for Panasas

Several CAE Disciplines – Primary Focus is Scalable CFD

Computational Structural Mechanics (CSM) for Strength; Vibration

Strength at minimum weight, low-frequency loading, fatigue
ANSYS; ABAQUS/Standard; MSC.Nastran

Computational Structural Mechanics (CSM) for Impact; Failure

Impact over short duration; contacts – crashworthiness

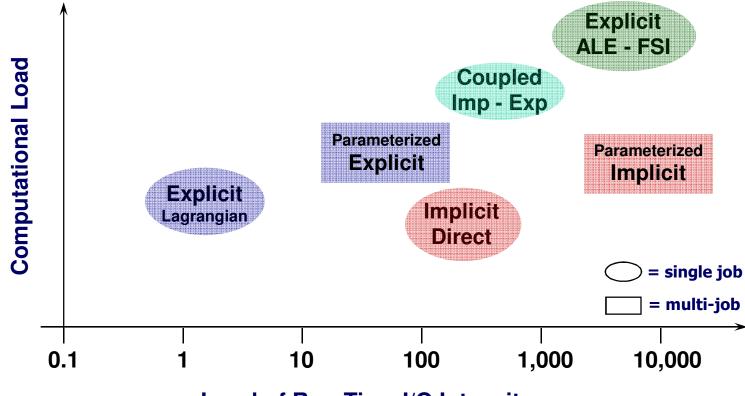
LS-DYNA; ABAQUS/Standard; PAM-CRASH; RADIOSS

Computational Fluid Dynamics (CFD)

- □ Aerodynamics; propulsion applications; internal HVAC flows □ FLUENT; STAR-CD; STAR-CCM+; CFD++; Ansys/CFX; AcuSolve
- Computational Electromagnetics (CEM)

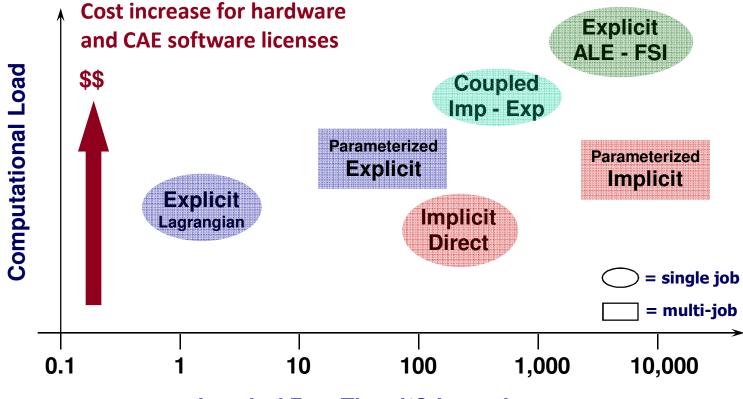
EMC for sensors, controls, antennas; low observables RCS

Process Integration and Design Optimization (PIDO)


Gimulation environments that couple IFEA, EFEA, CFD, and CEM as required

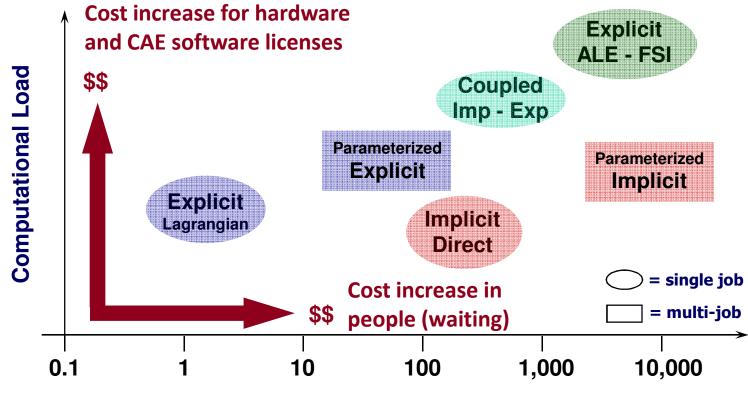
CAE Post-Processing and Visualization

Qualitative and quantitative interpretation of CAE simulation results


HPC Requirements for CAE Multiphysics panasas

CAE Multiphysics Requires Increasing Computational Load <u>*and***</u> I/O**

Level of Run-Time I/O Intensity


CAE Multiphysics Requires Increasing Computational Load <u>*and***</u> I/O**

Level of Run-Time I/O Intensity

HPC Requirements for CAE Multiphysics panasas

CAE Multiphysics Requires Increasing Computational Load <u>and</u> I/O

Level of Run-Time I/O Intensity

CAE Data-Intensity Challenges Growing

CAE Workflow Bottlenecks:

I/O related to end-user collaboration-intensive tasks:

- Long times in pushing sub-domain partitions to nodes
- Post-processing of large files owing to their network transfer
- Case and data management/movement of CAE simulation results

CAE Workload Bottlenecks :

I/O related to parallel cluster *compute-intensive* tasks:

- Thru-put of "mixed-disciplines" competing for same I/O resource
- Transient CFD (LES, etc.) with increased data-save frequency
- Large-DOF CSM implicit with out-of-core I/O requirements
- MM-element CSM explicit with 1000's of data-saves
- Non-deterministic modeling automation and parameterization
- General application of multi-scale, multi-discipline, multi-physics

panasa

Panasas File System-Based CAE Studies panasas

ISV Software		Model Size	#Cores	Advantage
FLUENT	FLUENT 12 ANSYS	111M Cells	128	> 2x vs. NAS
CD-adapco	STAR-CD 4.06 CD-adapco	17M Cells	256	1.9x vs. NAS
STANFORD UNIVERSITY	CDP 2.4 Stanford	30M Cells	512	1.8x vs. NAS
	Abaqus/Std 6.8-3 SIMULIA	5M DOFs	multi-job	1.4x vs. DAS
AN SYS [®]	ANSYS 11 ANSYS	SP1 Suite	16	"best NAS "
LISTC Livermore Suffware Technology Corp.	LS-DYNA 971 LSTC	3M DOFs	16	equal to DAS

Significance of Panasas CAE Studies

- These are commercial <u>applications</u> -- not benchmark kernels
- These studies focus on serial vs. parallel file system benefits
- All CAE models/inputs were <u>relevant</u> to customer practice
- Most were run on <u>production systems</u> at customers, others on OEM (e.g. SGI, Dell) or ISV systems, and no runs at Panasas
- All benchmarks were validated either by an ISV or customer
- Among the all "types" of benchmarks, either <u>CFD</u>, <u>I-FEA</u>, or <u>E-FEA</u>, there was <u>consistency</u> among the numerical results for each type
- These studies have strengthened Panasas <u>relationships</u> with ISVs and boosted ISV and customer confidence in Panasas <u>technical</u> <u>abilities</u> and understanding of industry HPC objectives

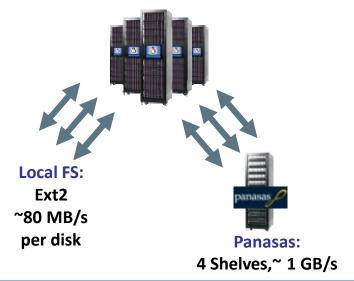
panasa

Description of System at U of Cambridge panasas

University of Cambridge

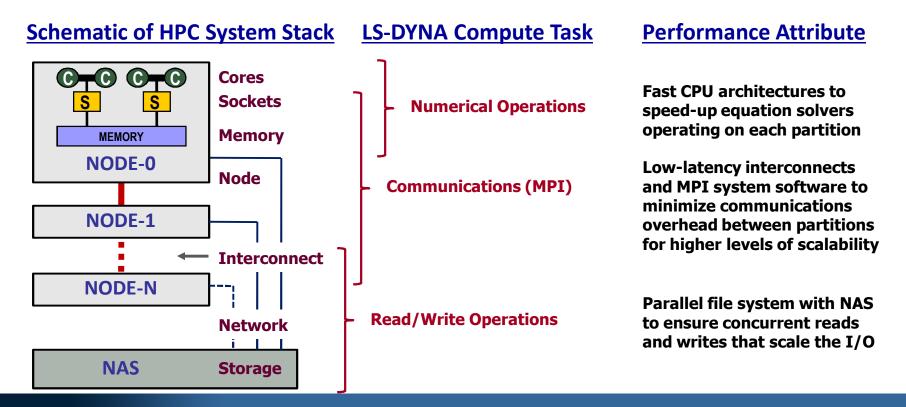
UNIVERSITY OF CAMBRIDGE

HPC Service, Darwin Supercomputer

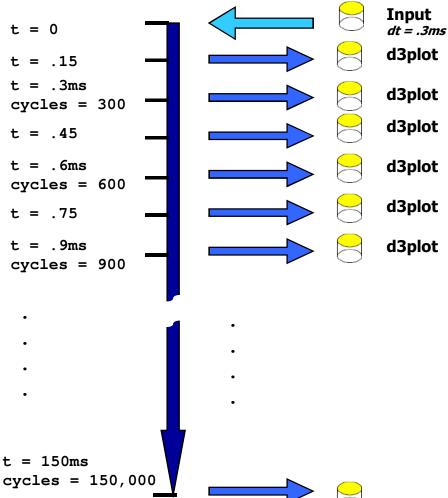

Darwin File Systems and Storage

- PanFS: 4 Shelves AS3000 XC, 20 TB file system; network connected through Qlogic Silverstorm 9080 and 9240 switches
- NFS: Dell PowerEdge 1950 server, Chelsio T310 10Gb ethernet NIC, PERC 5/E RAID, Dell MD 1000 SAS (10TB)
- Lustre: v1.6.4.3/DDN storage over Gbit ethernet (87TB)

Univ of Cambridge DARWIN Cluster				
Location: University of Cambridge <u>http://www.hpc.cam.ac.uk</u>				
Vendor: Dell ; 585 nodes; 2340 cores; 8 GB per node; 4.6 TB total memory				
CPU: Intel Xeon (Woodcrest) DC, 3.0 GHz / 4MB L2 cache				
Interconnect: InfiniPath QLE7140 SDR HCAs; Silverstorm 9080 and 9240 switches,				
File Systems: Panasas PanFS 4 shelves AS3000 XC, 20 TB capacity; NFS – Chelsio T310 10Gb ethernet NIC, PERC 5/E RAID Dell MD 1000 SAS 10TB capacity				
Operating System: Scientific Linux CERN SLC release 4.6				


DARWIN 585 nodes; 2340 cores

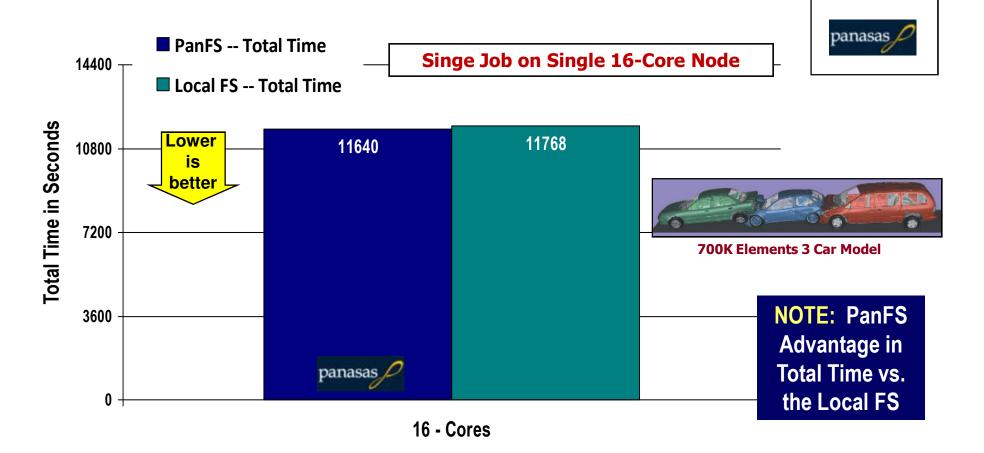
HPC Characterization of an LS-DYNA Job panasas


Like most all parallel FEA, an LS-DYNA job contains a mix of compute tasks that each require specific performance attributes of an HPC system:

- Numerical Operations: typically equations solvers and other modeling calculations
- Communication Operations: partition boundary information "passed" between cores
- Read and Write Operations: case and data file i/o before/during/after computations

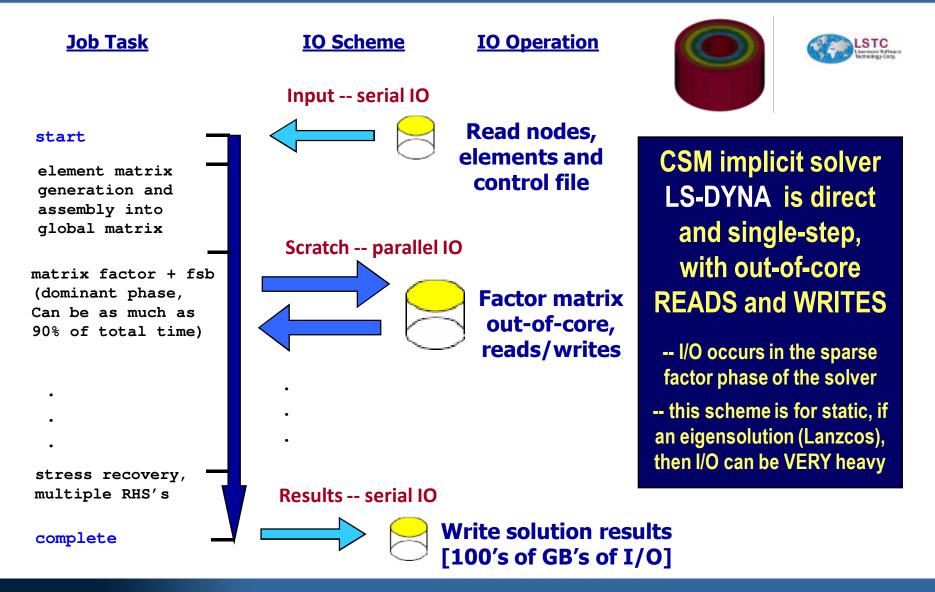
Increasing I/O in LS-DYNA User Practice panasas

Rank 0


LS-DYNA Higher Output Frequency and Data Size

- today limited by I/O bottlenecks to MPI rank 0
- desire for improved user understanding of the event evolution
- desire to monitor solution for error (contact issues, element distortions, etc.)

d3plot (1000 file writes)


3car Performance for 8 Cores x 2 Nodes panasas

LS-DYNA 971: Comparison of PanFS vs. Local FS

LS-DYNA Implicit I/O Scheme

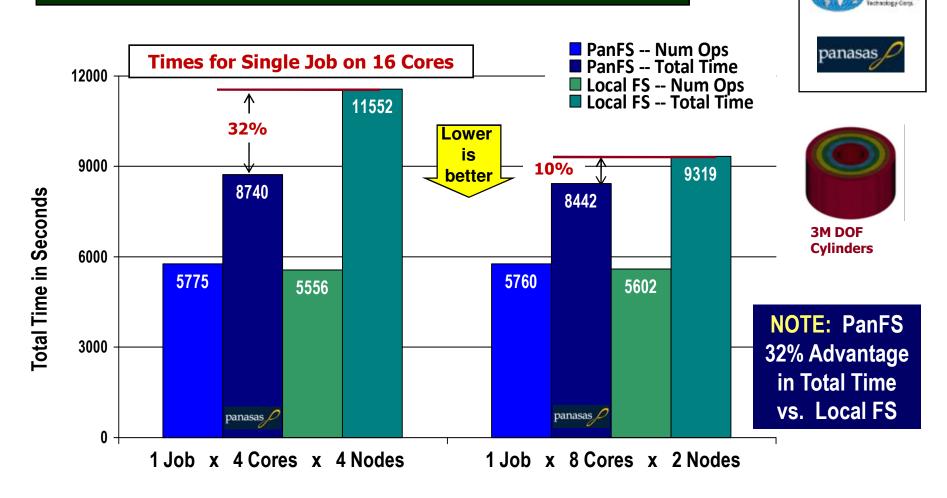
panasas 🄎

Benchmark Problem – CYL1E6

- LS-DYNA v971 implicit
- 6 nested cylinders with contact between them
- 921,600 Solid Elements
- 1,014,751 Nodes
- 3,034,944 Order of Linear Algebra Problem
- 1 Nonlinear Implicit Time Step, 2 Factors, 2 Solves, 4 Force Computations

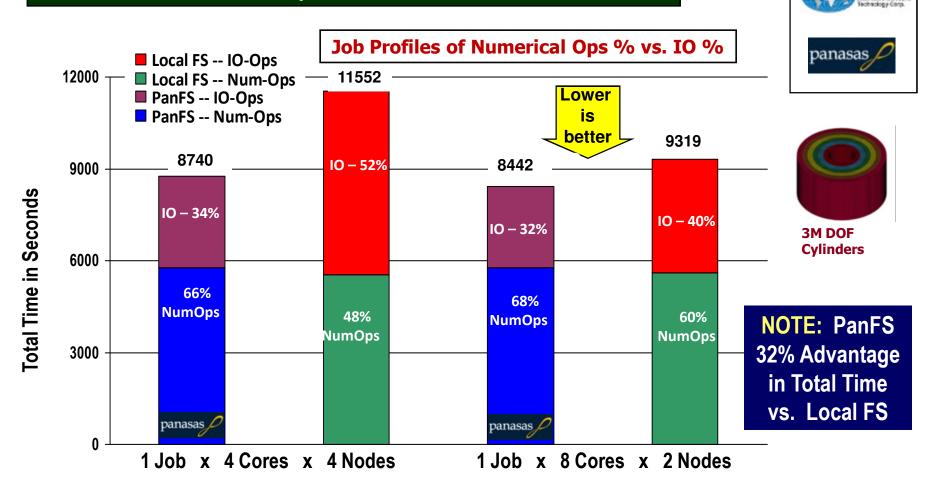
Performance for LS-DYNA 971 Implicit

LS-DYNA 971: Comparison of PanFS vs. Local FS



Performance for LS-DYNA 971 Implicit

LS-DYNA 971: Comparison of PanFS vs. Local FS



panasas

STC

Numerical vs. IO Computational Profile

LS-DYNA 971: Comparison of PanFS vs. Local FS

panasas

STC

Acknowledged Contributors to the Study panasas

University of Cambridge

- Dr. Paul Calleja, Director, HPCS
- Dr. Stuart Rankin, Lead System Manager, HPCS

LSTC

- Dr. Jason Wang, Parallel Development Lead Explicit
- Dr. Roger Grimes, Parallel Development Lead Implicit

Panasas

• Mr. Derek Burke, Director of Marketing, Panasas EMEA

Why Organizations Choose Panasas

Existing demand for a parallel file-system

 I/O intensive jobs and/or multiple-jobs performing I/O simultaneously and/or a high aggregate I/O bandwidth required

Requirement for a "production-ready" solution

- Easy to Install: 1.5 hours to install, configure, and begin running jobs
- Easy to Scale: Scales performance with capacity. e.g. 1 shelf provided 600 MB/s; 2 shelves provided 1.2 GB/s. Dynamically load-balances data as additional capacity is added without disruption

Very competitive total cost of ownership

- **Best Value:** For less than the fully burdened cost of NAS
- storage, you can get HPC storage from Panasas
- Easy to Manage: Extremely easy to administer; very low
- administration costs

Boeing HPC Based on Panasas Storage

BOEING

Boeing Company CAG & IDS, Locations in USA

Profile

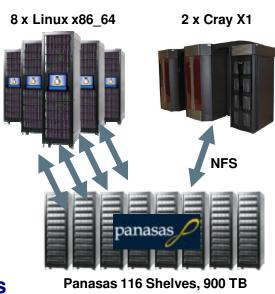
Use of HPC for design of commercial aircraft, space and communication and defense weapons systems

Challenge

Deploy CAE simulation software for improvements in aerodynamic performance, reductions in noise, etc.

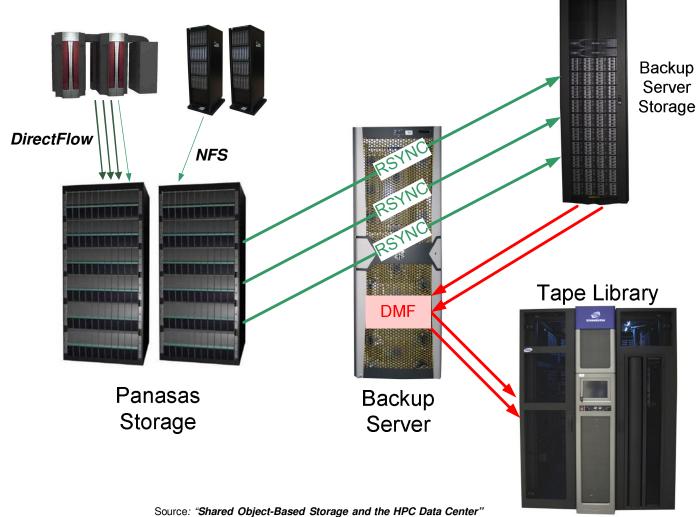
Provide HPC cluster environment to support 1000's of users for CFD (Overflow; CFD++; FLUENT), CSM (MSC.Nastran; Abaqus; LS-DYNA), and CEM (CARLOS)

HPC Solution


- 8 x Linux clusters (~3600 cores); 2 x Cray X1 (512 cores)
- Panasas PanFS, 112 storage systems, > 900 TBs

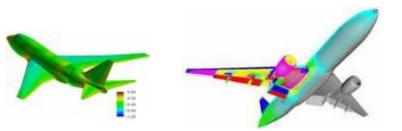
Business Value

CAE scalability allows rapid simulation turn-around, and enables Boeing to use HPC for reduction of expensive tests



panasas

Panasas for Boeing HPC



Jim Glidewell/Claude Asher, High Performance Computing, Enterprise Storage and Servers, Boeing, Supercomputing Conference 2007

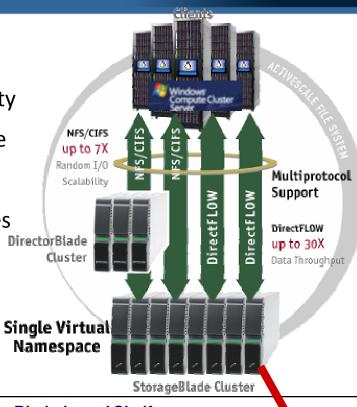
Panasas for Boeing HPC

- Panasas is meeting the high-performance storage requirements for Boeing's HPC facility:
 - Simple installation and easy Admin management
 - Superior DirectFlow performance and more than adequate NFS performance
 - Industry-leading post-sales support
 - Users are far more productive with quicker job turn-around
 - Shared common data storage has reduced data duplication and contained growth

Source: "Shared Object-Based Storage and the HPC Data Center" Jim Glidewell/Claude Asher, High Performance Computing, Enterprise Storage and Servers, Boeing, Supercomputing Conference 2007

Panasas Parallel File System and Storage panasas

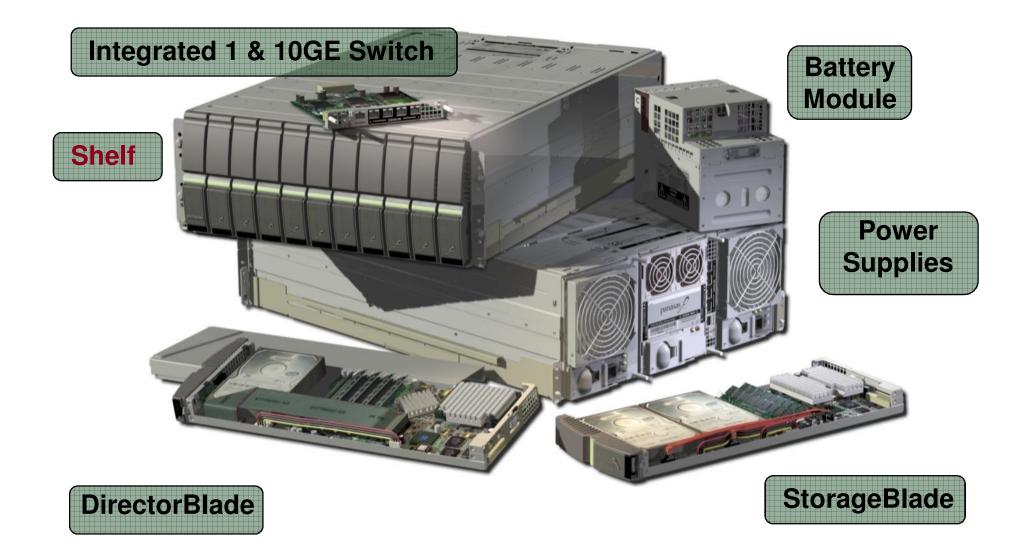
Parallel File System and Storage Appliance

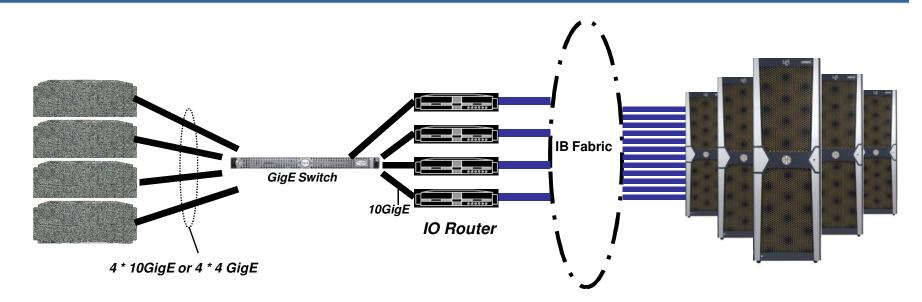

- Parallel file system layered over an object-based architecture for scalability, reliability, manageability
- Panasas combines a PFS with architecture-aware storage hardware for ease in implementation
- High Performance: 600 MB/s per shelf and scales

Panasas parallel client S/W DirectFLOW

- Supports Linux (many variants, no kernel mods)
- Also multi-protocol support: NFS, CIFS, pNFS

Panasas technology alliances


- ISVs with parallel CAE
- OEM Resellers: Bull, SGI, Dell
- Networking: Cisco; Force 10
- Intel ICR CERTIFIED
- Research organizations


Description of the Blade-based Shelf

- Blade: disks, CPU, and memory
- 4U enclosure 11 blades per shelf
- Capacity 10, 15, or 20 TB per shelf
- Up to 20GB cache per shelf
- Up to 3 Director metadata blades
- 350 MB/s (GE) or 600 MB/s (10GE)
- Up to 10 shelves (200 TB) per rack

Panasas I/O Router for IB Connectivity

- •The Panasas I/O router has Infiniband and 10GigE
- •Linux OS with OFED 1.3
- •Transfer rate is up to 600 MB/second per router
- •Four IO-routers can handle the load of four shelves using 10GigE
- •Load is balanced over the IO-routers
- •If one IO Router fails then the remaining ones take over the load

panasas

Panasas Industry Leadership in HPC

US DOE: Panasas selected for *Roadrunner*, ~2PB file system – top of Top 500

LANL \$133M system for weapons research: <u>www.lanl.gov/roadrunner</u>

SciDAC: Panasas CTO selected to lead Petascale Data Storage Institute

 CTO Gibson leads PDSI launched Sep 06, leveraging experience from PDSI members: LBNL/NERSC; LANL; ORNL; PNNL; Sandia NL; CMU; UCSC; UOMI

Aerospace: Airframes and engines, both commercial and defense

Boeing HPC file system; 3 major engine mfg; top 3 U.S. defense contractors

Formula-1: HPC file system for Top 2 clusters – 3 teams in total

D Top clusters at an F-1 team with a UK HPC center and BMW Sauber

Intel: Certified Panasas storage for range of HPC applications – Panasas Now ICR

- Intel is a customer, uses Panasas storage in EDA and HPC benchmark center
- SC08: Panasas won 5 of the annual HPC Wire Editor's and Reader's Choice Awards
 - Awards for roadrunner (3) including "Top Supercomputing Achievemer Los Alamos
 - "Top 5 vendors to watch in 2009" | "Reader's Best HPC Storage Product"

Validation: Panasas customers won 8 out of 12 HPC Wire industry awards for SC08:

SciDAC

pdsi

panasa

(intel)

Slide 35

Questions

For more information, call Panasas at:

1-888-PANASAS (US & Canada)

00 (800) PANASAS2 (UK & France)

00 (800) 787-702 (Italy)

+001 (510) 608-7790 (All Other Countries)

Thank You