

Performance Study: FLUENT 12 and PanFS

Stan Posey Industry and Applications Market Development Panasas, Fremont, CA, USA

Bill Loewe Technical Staff Member, Applications Engineering Panasas, Fremont, CA, USA

Panasas Company Overview

Founded	1999 By Prof. Garth Gibson, Co-Inventor of RAID		
Technology	Parallel File System and Parallel Storage Appliance		
Locations	US: HQ in Fremor	HQ in Fremont, CA, USA	
	R&D centers in Pittsburgh & Minneapolis		
	EMEA: UK, DE, FR, IT, ES, BE, Russia		
	APAC: China, Japan,	China, Japan, Korea, India, Australia	
Customers	FCS October 2003, deployed at 200+ customers		
Market Focus	Energy	Academia	
	Government	Life Sciences	
	Manufacturing	Finance	
Alliances	ISVs: NNSYS	Resellers: Sgi	
Primary Investors	MDV THE CARLY	LE GROUP VENTURES (Intel)	

Background on Parallel FLUENT Study

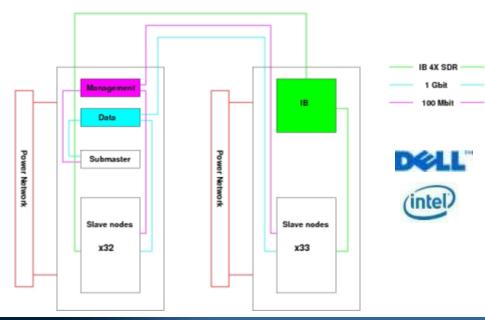
Motivation

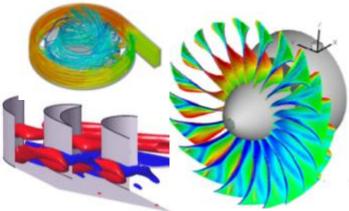
- Since 2006, Ansys and Panasas have jointly-invested in development of parallel I/O for release in FLUENT 12
- This study demonstrates benefits of Panasas parallel file system and parallel storage for FLUENT 12 vs. FLUENT 6.3 with tests for both <u>capability</u> and <u>capacity</u> computing
- Collaborators include Ansys and the University of Cambridge

Considerations

- FLUENT is an <u>application</u> from ANSYS -- not a benchmark kernel
- The CFD models and tests and <u>relevant</u> to customer practice
- This was run on a <u>production system</u> at customer U of Cambridge
- The results were <u>validated</u> by U of Cambridge and ANSYS

panasas




Description of Darwin at U of Cambridge

Darwin Supercomputer Computational Units

- Nine repeating units, each consists of 64 nodes (2 racks) providing 256 cores each, 2340 cores total
- All nodes within a CU connected to a full bisectional bandwidth Infiniband 900 MB/s, MPI latency of 2 μs

panasas

Source: http://www.hpc.cam.ac.uk

Details of the FLUENT 111M Cell Model

Unsteady external aero for 111 MM cell truck; 5 time steps with 100 iterations, and a single .dat file write

Number of c	cells 1	11,091,452		
Solver	PBNS, DES	PBNS, DES, Unsteady		
Iterations	▲ /	5 time steps, 100 total iters - data save after last iteration		
Output size: FLUENT v6.3	(serial I/O; size of .dat file)	14,808 MB		
FLUENT v12 FLUENT v12	(serial I/O; size of .dat file) (parallel I/O: size of .pdat file)	16,145 MB 19, 683 MB		

(parallel I/O; size of .pdat file)

DARWIN 585 nodes; 2340 cores

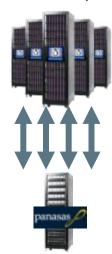
panasa

UNIVERSITY OF CAMBRIDGE

Univ of Cambridge DARWIN Cluster

(intel

Location: University of Cambridge http://www.hpc.cam.ac.uk


Vendor: Dell ; 585 nodes; 2340 cores; 8 GB per node; 4.6 TB total mem

CPU: Intel Xeon (Woodcrest) DC, 3.0 GHz / 4MB L2 cache

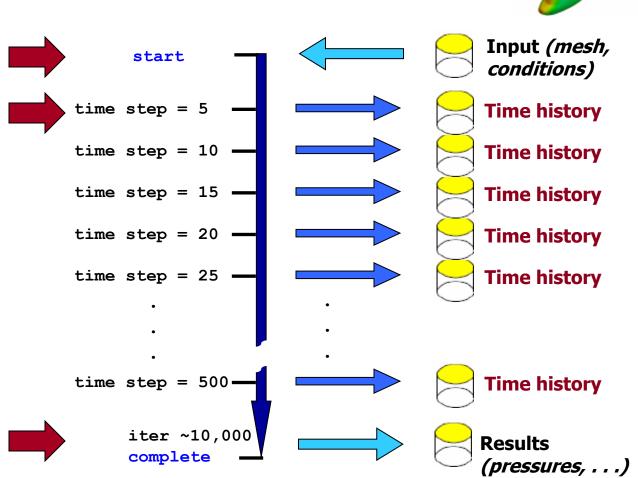
Interconnect: InfiniPath QLE7140 SDR HCAs; Silverstorm 9080 and 9240 switches,

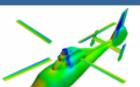
File System: Panasas PanFS, 4 shelves, 20 TB capacity

Operating System: Scientific Linux CERN SLC release 4.6

Panasas: 4 Shelves, 20 TB

This Study is a Partial CFD Simulation

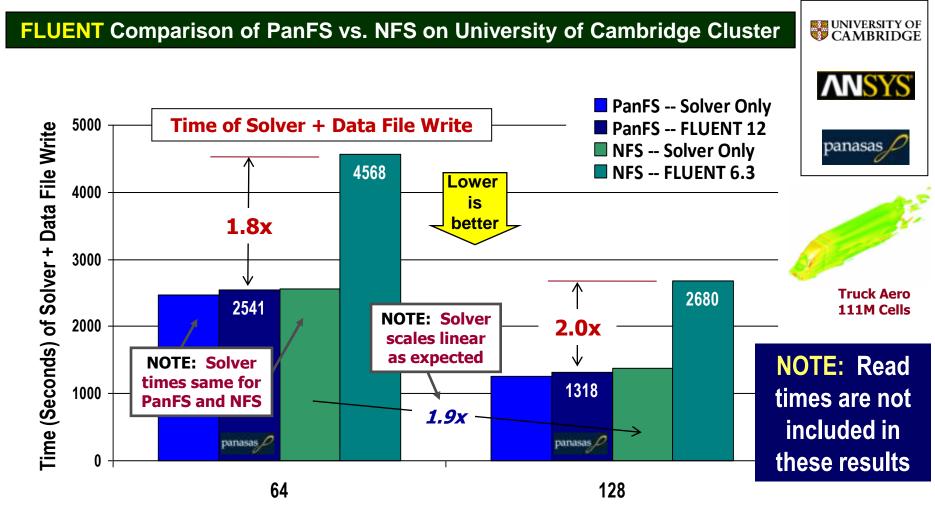

Unsteady CFD Simulation Schematic and Typical I/O Profile


The Focus of the FLUENT study is only a sub-set of a full unsteady CFD simulation:

- Read once

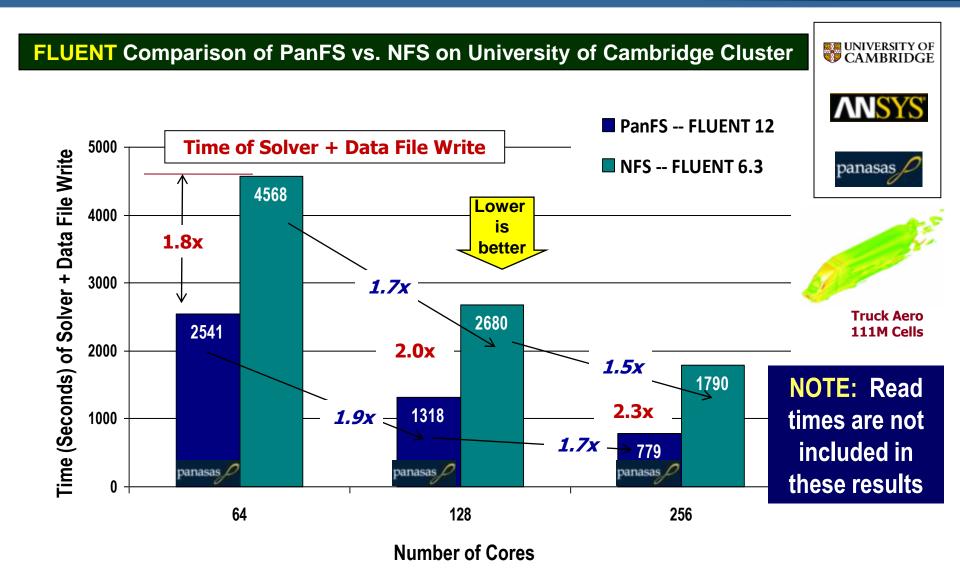
- Compute 5 time steps (100 iters)

- Write once (but full simulation has multiple writes)

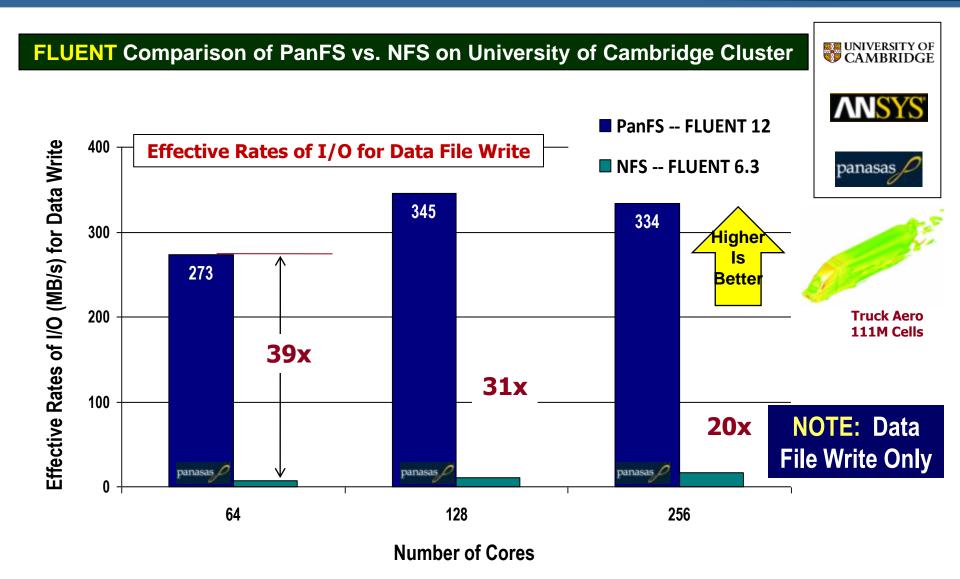

FLUENT 12 and New Parallel I/O Scheme panasas

Panasas and ANSYS Alliance Has Produced Parallel I/O for FLUENT 12

Source: Barb Hutchings Presentation at SC07, Nov 2007, Reno, NV


Parallel FLUENT 12 and 2x Improvement panasas

Number of Cores


Scalability of Solver + Data File Write

panasas 🄎

Performance of Data File Write in MB/s

panasas 🄎

- FLUENT 6.3 End-User Challenges
 - Large production cases may not scale effectively and efficiently on a large cluster (>64 cores) for read and write operations owing to serial I/O
 - The use of frequent checkpoints for very large steady-state cases, and/or large unsteady simulations (multiple writes) is impractical with serial I/O
- FLUENT 12 and Panasas Solution
 - The Panasas parallel file system and storage, combined with parallel I/O of FLUENT 12 scales I/O and therefore the overall FLUENT simulation
 - Use of PanFS for the 111M cell case at 64-way provides a nearly 2x increase in FLUENT utilization for the same software license \$'s spent
 - Such capability enables FLUENT users to develop more advanced CFD models (more transient vs. steady, LES, etc.) with confidence in scalability

Two Measures of FLUENT Performance

- A single wide-parallel job vs. multiples of less-parallel jobs
 - Often referenced in HPC industry as capability vs. capacity computing
 - Both are important, but capacity computing more common in practice
 - Example: design optimization based on capacity, impractical with capability

Panasas scales I/O for the large single CFD job, and provides parallel data access (vs. serial NFS) for multi-job scenarios

Compute nodes PanFS and storage

Slide 12

A multi-job test was developed with the Truck model at 14M cells:

Single Large

- The same Truck model with a coarsened mesh from 111M to 14M cells
- Launched 8 times (8 copies) each using 16 cores for a total 128 cores
- PanFS is parallel, NFS has single data path for during 8 solution writes

panasa

Panasas, Inc.

Truck Aero

14M Cells

Details of the FLUENT 14M Cell Model

Unsteady external aero for 14 MM cell truck; 5 time steps with 100 iterations, and a <u>single</u> .dat file write

Number of o	cells 1	13,839,118	
Solver	PBNS, DES,	PBNS, DES, Unsteady	
Iterations	5 time steps, 100 total iters - data save after last iteration		
Output size	:		
FLUENT v6.3	(serial I/O; size of .dat file)	2,466 MB	
FLUENT v12	(serial I/O; size of .dat file)	2,467 MB	
FLUENT v12	(parallel I/O; size of .pdat file)	2,898 MB	

DARWIN 585 nodes; 2340 cores

panasa

UNIVERSITY OF

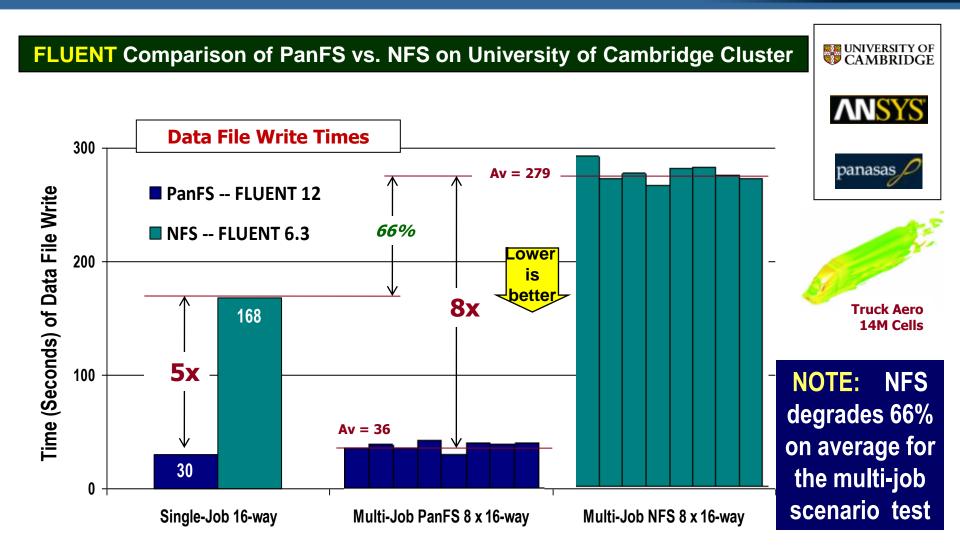
Univ of Cambridge DARWIN Cluster

DELL" (intel

Location: University of Cambridge <u>http://www.hpc.cam.ac.uk</u>

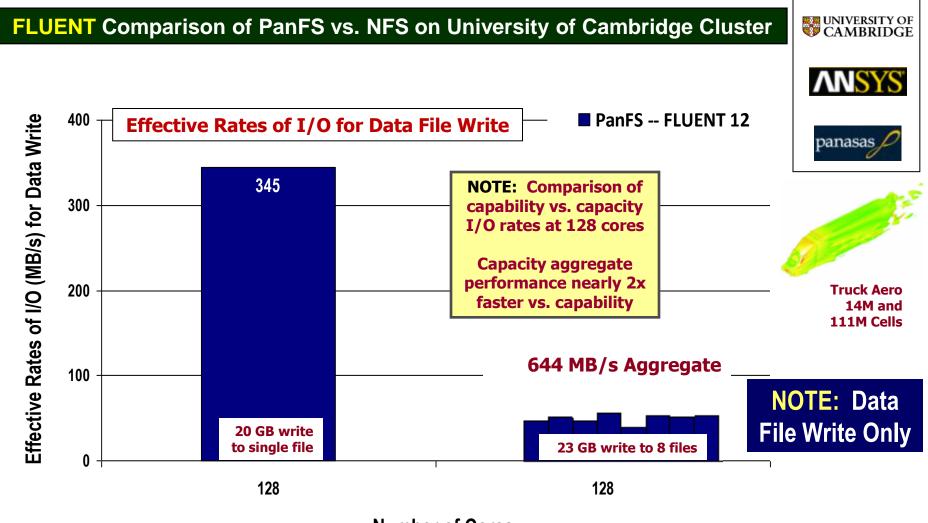
Vendor: Dell ; 585 nodes; 2340 cores; 8 GB per node; 4.6 TB total mem

CPU: Intel Xeon (Woodcrest)DC, 3.0 GHz / 4MB L2 cache


Interconnect: InfiniPath QLE7140 SDR HCAs; Silverstorm 9080 and 9240 switches,

File System: Panasas PanFS, 4 shelves, 20 TB capacity

Operating System: Scientific Linux CERN SLC release 4.6



Panasas: 4 Shelves, 20 TB

Performance of Data File Write in MB/s

panasas 🄎

Number of Cores

Contributors to the Study

University of Cambridge

- Dr. Paul Calleja, Director, HPCS
- Dr. Stuart Rankin, Lead System Manager, HPCS

ANSYS

- **o** Dr. Prasad Alavilli, FLUENT and CFX Development
- Ms. Barbara Hutchings, Director of Technology Alliances

Panasas

Slide 16

- Mr. Derek Burke, Director of Marketing, Panasas EMEA
- Ms. Michelle Cheng, Director of Global Alliances

UNIVERSITY OF

RESOURCES:

- Questions can be directed to the Panasas email addresses below
- The 111M cell truck model is public and available from Ansys http://www.fluent.com/software/fluent/fl6bench/fl6bench_6.3/problems/truck_111m.htm
- FLUENT log files of all jobs are available upon request to Panasas

Stan Posey sposey@panasas.com Bill Loewe bloewe@panasas.com